精英家教網 > 初中數學 > 題目詳情
(2009•莆田)已知,如圖,BC是以線段AB為直徑的⊙O的切線,AC交⊙O于點D,過點D作弦DE⊥AB,垂足為點F,連接BD、BE.
(1)仔細觀察圖形并寫出四個不同的正確結論:①______,②______,③______,④______(不添加其它字母和輔助線,不必證明);
(2)∠A=30°,CD=,求⊙O的半徑r.

【答案】分析:(1)由BC是⊙O的切線,DF⊥AB,得∠AFD=∠CBA=90°;根據DE∥BC和垂徑定理知,弧BD=弧BE,DF=FE,BD=BE,由等邊對等角得∠E=∠EDB;再由圓周角定理得∠A=∠E,可證△BDF≌△BEF,△BDF∽△BAD;
(2)當∠A=30°時BD=r,∠C=60°,再根據Rt△BCD中tan60°可求得r=2.
解答:解:(1)BC⊥AB,AD⊥BD,DF=FE,BD=BE,△BDF≌△BEF,△BDF∽△BAD,∠BDF=∠BEF,∠A=∠E,DE∥BC等;

(2)∵AB是⊙O的直徑,
∴∠ADB=90°,
又∵∠A=30°,
∴BD=ABsinA=ABsin30°=AB=r;
又∵BC是⊙O的切線,
∴∠CBA=90°,
∴∠C=60°;
在Rt△BCD中,
CD=
=tan60°,
∴r=2.
點評:本題利用了切線的性質,垂徑定理,圓周角定理,直角三角形的性質,銳角三角函數的概念求解.
練習冊系列答案
相關習題

科目:初中數學 來源:2009年全國中考數學試題匯編《二次函數》(07)(解析版) 題型:解答題

(2009•莆田)已知,如圖1,過點E(0,-1)作平行于x軸的直線l,拋物線y=x2上的兩點A、B的橫坐標分別為-1和4,直線AB交y軸于點F,過點A、B分別作直線l的垂線,垂足分別為點C、D,連接CF、DF.
(1)求點A、B、F的坐標;
(2)求證:CF⊥DF;
(3)點P是拋物線y=x2對稱軸右側圖象上的一動點,過點P作PQ⊥PO交x軸于點Q,是否存在點P使得△OPQ與△CDF相似?若存在,請求出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2009年福建省莆田市中考數學試卷(解析版) 題型:解答題

(2009•莆田)已知,如圖1,過點E(0,-1)作平行于x軸的直線l,拋物線y=x2上的兩點A、B的橫坐標分別為-1和4,直線AB交y軸于點F,過點A、B分別作直線l的垂線,垂足分別為點C、D,連接CF、DF.
(1)求點A、B、F的坐標;
(2)求證:CF⊥DF;
(3)點P是拋物線y=x2對稱軸右側圖象上的一動點,過點P作PQ⊥PO交x軸于點Q,是否存在點P使得△OPQ與△CDF相似?若存在,請求出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2009年全國中考數學試題匯編《三角形》(12)(解析版) 題型:解答題

(2009•莆田)已知:等邊△ABC的邊長為a.
探究(1):如圖1,過等邊△ABC的頂點A、B、C依次作AB、BC、CA的垂線圍成△MNG,求證:△MNG是等邊三角形且MN=a;
探究(2):在等邊△ABC內取一點O,過點O分別作OD⊥AB、OE⊥BC、OF⊥CA,垂足分別為點D、E、F.
①如圖2,若點O是△ABC的重心,我們可利用三角形面積公式及等邊三角形性質得到兩個正確結論(不必證明):結論1. OD+OE+OF=a;結論2. AD+BE+CF=a;
②如圖3,若點O是等邊△ABC內任意一點,則上述結論1,2是否仍然成立?如果成立,請給予證明;如果不成立,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年云南省楚雄州雙柏縣中考數學模擬試卷(妥甸中學)(解析版) 題型:填空題

(2009•莆田)已知⊙O1和⊙O2的半徑分別是一元二次方程(x-1)(x-2)=0的兩根,且O1O2=2,則⊙O1和⊙O2的位置關系是   

查看答案和解析>>

同步練習冊答案