已知⊙O中,弦AB⊥弦CD于E,求證:∠AOD+∠BOC=180°.
分析:連接AC,BD,由圓周角定理得:∠AOD=2∠ABD,∠BOC=2∠CDB,∠CAB=∠CDB,然后利用垂直的定義求得∠ABD+∠BDC=90°,從而得證.
解答:解:連接AC,BD,
由圓周角定理得:∠AOD=2∠ABD,∠BOC=2∠CDB,∠CAB=∠CDB,
∵弦AB⊥弦CD
∴∠ABD+∠BDC=90°,
∴∠AOD+∠BOC=2∠ABD+2∠BOC=2(∠ABD+∠CDB)=2×90°=180°
點評:本題考查了圓周角定理的知識,解題的關(guān)鍵是正確的作出輔助線構(gòu)造同弧所對的圓心角和圓周角.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖所示,已知⊙O中,弦AB,CD相交于點P,AP=6,BP=2,CP=4,則PD的長是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O中,弦AB與CD相交于點P.
求證:PA•PB=PC•PD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O中,弦AB=12cm,O點到AB的距離等于AB的一半,則∠AOB的度數(shù)為
 
°,圓的半徑為
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知⊙O中,弦AB=AC,點P是∠BAC所對弧上一動點,連接PB、PA、PC.

(1)如圖①,把△ABP繞點A逆時針旋轉(zhuǎn)到△ACQ,求證:點P、C、Q三點在同一直線上.
(2)如圖②,若∠BAC=60°,試探究PA、PB、PC之間的關(guān)系.
(3)若∠BAC=120°時,(2)中的結(jié)論是否成立?若是,請證明;若不是,請?zhí)骄克鼈冇钟泻螖?shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1997•昆明)已知⊙O中,弦AB的長為8cm,半徑為5cm,那么圓心O到弦AB的距離為
3
3
cm.

查看答案和解析>>

同步練習(xí)冊答案