精英家教網(wǎng)如圖,AM是⊙O的直徑,過(guò)⊙O上一點(diǎn)B作BN⊥AM,垂足為N,其延長(zhǎng)線交⊙O于點(diǎn)C,弦CD交AM于點(diǎn)E.
(1)如果CD⊥AB,求證:EN=NM;
(2)如果弦CD交AB于點(diǎn)F,且CD=AB,求證:CE2=EF•ED;
(3)如果弦CD、AB的延長(zhǎng)經(jīng)線交于點(diǎn)F,且CD=AB,那么(2)的結(jié)論是否仍成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.
分析:(1)求證EN=NM,只要證明△NEC≌△NMB即可;
(2)求證CE2=EF•ED,只需證△FEB∽△BED根據(jù)相似三角形的對(duì)應(yīng)邊成比例即可求得結(jié)論;
(3)成立.求證CE2=EF•ED,只需證△BDE∽△FBE,根據(jù)相似三角形對(duì)應(yīng)邊成比例即可得到結(jié)論.
解答:精英家教網(wǎng)(1)證明:如圖1,連接BM,
∵AM是⊙O的直徑,
∴∠ABM=90°.
∵CD⊥AB,
∴BM∥DC.
∴∠NBM=∠NCE.
∵BN=NC(ON是弦心距),
∴△NEC≌△NMB(ASA).
∴EN=NM.

(2)證明:如圖2,連接AC,BE,BD.精英家教網(wǎng)
∵CD=AB,
ADB
=
DBC

AD
=
BC

∴∠ACD=∠BDC.
∴∠ACD=∠ABE,
∴∠BDC=∠ABE,∠BEF=∠BEF.
∴△FEB∽△BED.
∴EF•DE=BE2=CE2

(3)如圖3,(2)的結(jié)論仍成立精英家教網(wǎng)
證明:∵AM⊥BC,
∴BE=CE,AB=AC.
∴∠1=∠2,∠3=∠4.
∵AB=CD,
∴∠4=∠DBC.
∴∠3=∠DBC=∠2+∠5.
又∵∠3=∠F+∠1,
∴∠F=∠5.
∵∠BED=∠FEB,
∴△BDE∽△FBE.
∴BE:EF=ED:BE,
∴BE2=EF•ED.
∴CE2=EF•ED.
點(diǎn)評(píng):考查圓心角、弧、弦的關(guān)系,相似三角形的判定,垂徑定理的運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直y=mx與雙曲線y=
k
x
交于點(diǎn)A,B.過(guò)點(diǎn)A作AM⊥x軸,垂足為點(diǎn)M,連接BM.若S△ABM=1,則k的值是( 。
A、1B、m-1C、2D、m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•天津)“三等分任意角”是數(shù)學(xué)史上一個(gè)著名問(wèn)題.已知一個(gè)角∠MAN,設(shè)∠α=
13
∠MAN.
(Ⅰ)當(dāng)∠MAN=69°時(shí),∠α的大小為
23
23
(度);
(Ⅱ)如圖,將∠MAN放置在每個(gè)小正方形的邊長(zhǎng)為1cm的網(wǎng)格中,角的一邊AM與水平方向的網(wǎng)格線平行,另一邊AN經(jīng)過(guò)格點(diǎn)B,且AB=2.5cm.現(xiàn)要求只能使用帶刻度的直尺,請(qǐng)你在圖中作出∠α,并簡(jiǎn)要說(shuō)明做法(不要求證明)
如圖,讓直尺有刻度一邊過(guò)點(diǎn)A,設(shè)該邊與過(guò)點(diǎn)B的豎直方向的網(wǎng)格線交于點(diǎn)C,與過(guò)點(diǎn)B水平方向的網(wǎng)格線交于點(diǎn)D,保持直尺有刻度的一邊過(guò)點(diǎn)A,調(diào)整點(diǎn)C、D的位置,使CD=5cm,畫(huà)射線AD,此時(shí)∠MAD即為所求的∠α.
如圖,讓直尺有刻度一邊過(guò)點(diǎn)A,設(shè)該邊與過(guò)點(diǎn)B的豎直方向的網(wǎng)格線交于點(diǎn)C,與過(guò)點(diǎn)B水平方向的網(wǎng)格線交于點(diǎn)D,保持直尺有刻度的一邊過(guò)點(diǎn)A,調(diào)整點(diǎn)C、D的位置,使CD=5cm,畫(huà)射線AD,此時(shí)∠MAD即為所求的∠α.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:044

如圖中ACB為教學(xué)樓的雙跑樓梯的截面圖,其中每級(jí)階梯寬MN30cm,高AM15cm,正中的休息平臺(tái)寬CD2.6m,走廊AEBG寬為1.5m.問(wèn):

(1)若每層樓高HF3.6m,則每層樓應(yīng)設(shè)多少級(jí)階梯?樓寬EF是多少?樓梯ACB的直扶手有多長(zhǎng)?

(2)若每層樓有22級(jí)階梯,則6層的平頂樓有多高、多寬?

(3)樓梯的傾斜角是多少?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年初中數(shù)學(xué)單元提優(yōu)測(cè)試卷-反比例函數(shù)的性質(zhì)、k的幾何意義(帶解析) 題型:單選題

如圖,直y=mx與雙曲線y=交于點(diǎn)A,B.過(guò)點(diǎn)A作AM⊥x軸,垂足為點(diǎn)M,連接BM.若SABM=1,則k的值是( 。

A. 1   B. m﹣1    C. 2   D. m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年初中數(shù)學(xué)單元提優(yōu)測(cè)試卷-反比例函數(shù)的性質(zhì)、k的幾何意義(解析版) 題型:選擇題

如圖,直y=mx與雙曲線y=交于點(diǎn)A,B.過(guò)點(diǎn)A作AM⊥x軸,垂足為點(diǎn)M,連接BM.若S△ABM=1,則k的值是(  )

A. 1   B. m﹣1    C. 2   D. m

 

查看答案和解析>>

同步練習(xí)冊(cè)答案