如圖,已知直線a、b相交,1=60°,則∠2=________,∠3=________,∠4=________.

 

答案:
解析:

  120° 60°  120°

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:022

  如圖,已知直線a、b、c交于點(diǎn)O1=30°,∠23=32,則3=________,∠4=________.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

實(shí)踐與探究:

對(duì)于任意正實(shí)數(shù)a、b,∵≥0, ∴≥0,∴

只有當(dāng)a=b時(shí),等號(hào)成立。

結(jié)論:在(a、b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥,只有當(dāng)a=b時(shí),a+b有最小值。   根據(jù)上述內(nèi)容,回答下列問(wèn)題:

(1)若m>0,只有當(dāng)m=       時(shí),有最小值         

若m>0,只有當(dāng)m=       時(shí),2有最小值        .

(2)如圖,已知直線L1與x軸交于點(diǎn)A,過(guò)點(diǎn)A的另一直線L2與雙曲線相交于點(diǎn)B(2,m),求直線L2的解析式.

(3)在(2)的條件下,若點(diǎn)C為雙曲線上任意一點(diǎn),作CD∥y軸交直線L1

于點(diǎn)D,試求當(dāng)線段CD最短時(shí),點(diǎn)A、B、C、D圍成的四邊形面積.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

實(shí)踐與探究:
對(duì)于任意正實(shí)數(shù)a、b,∵≥0, ∴≥0,∴
只有當(dāng)a=b時(shí),等號(hào)成立。
結(jié)論:在(a、b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥,只有當(dāng)a=b時(shí),a+b有最小值。  根據(jù)上述內(nèi)容,回答下列問(wèn)題:
(1)若m>0,只有當(dāng)m=      時(shí),有最小值        ;
若m>0,只有當(dāng)m=      時(shí),2有最小值       .
(2)如圖,已知直線L1與x軸交于點(diǎn)A,過(guò)點(diǎn)A的另一直線L2與雙曲線相交于點(diǎn)B(2,m),求直線L2的解析式.

(3)在(2)的條件下,若點(diǎn)C為雙曲線上任意一點(diǎn),作CD∥y軸交直線L1
于點(diǎn)D,試求當(dāng)線段CD最短時(shí),點(diǎn)A、B、C、D圍成的四邊形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省江陰長(zhǎng)涇片八年級(jí)下學(xué)期期中考試數(shù)學(xué)卷(帶解析) 題型:解答題

實(shí)踐與探究:
對(duì)于任意正實(shí)數(shù)a、b,∵≥0, ∴≥0,∴
只有當(dāng)a=b時(shí),等號(hào)成立。
結(jié)論:在(a、b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥,只有當(dāng)a=b時(shí),a+b有最小值。  根據(jù)上述內(nèi)容,回答下列問(wèn)題:
(1)若m>0,只有當(dāng)m=      時(shí),有最小值        ;
若m>0,只有當(dāng)m=      時(shí),2有最小值       .
(2)如圖,已知直線L1與x軸交于點(diǎn)A,過(guò)點(diǎn)A的另一直線L2與雙曲線相交于點(diǎn)B(2,m),求直線L2的解析式.

(3)在(2)的條件下,若點(diǎn)C為雙曲線上任意一點(diǎn),作CD∥y軸交直線L1
于點(diǎn)D,試求當(dāng)線段CD最短時(shí),點(diǎn)A、B、C、D圍成的四邊形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013屆江蘇省江陰長(zhǎng)涇片八年級(jí)下學(xué)期期中考試數(shù)學(xué)卷(解析版) 題型:解答題

實(shí)踐與探究:

對(duì)于任意正實(shí)數(shù)a、b,∵≥0, ∴≥0,∴

只有當(dāng)a=b時(shí),等號(hào)成立。

結(jié)論:在(a、b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥,只有當(dāng)a=b時(shí),a+b有最小值。   根據(jù)上述內(nèi)容,回答下列問(wèn)題:

(1)若m>0,只有當(dāng)m=       時(shí),有最小值         ;

若m>0,只有當(dāng)m=       時(shí),2有最小值        .

(2)如圖,已知直線L1與x軸交于點(diǎn)A,過(guò)點(diǎn)A的另一直線L2與雙曲線相交于點(diǎn)B(2,m),求直線L2的解析式.

(3)在(2)的條件下,若點(diǎn)C為雙曲線上任意一點(diǎn),作CD∥y軸交直線L1

于點(diǎn)D,試求當(dāng)線段CD最短時(shí),點(diǎn)A、B、C、D圍成的四邊形面積.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案