【題目】如圖所示,點(diǎn)A、B分別是∠NOP、∠MOP平分線上的點(diǎn),AB⊥OP于點(diǎn)E,BC⊥MN于點(diǎn)C,AD⊥MN于點(diǎn)D,下列結(jié)論錯(cuò)誤的是( )
A. AD+BC=AB B. 與∠CBO互余的角有兩個(gè)
C. ∠AOB=90° D. 點(diǎn)O是CD的中點(diǎn)
【答案】B
【解析】
根據(jù)角平分線上的點(diǎn)到角的兩邊距離相等可得AD=AE,BC=BE,利用角平分線的定義和平角的性質(zhì)可得到∠AOB的度數(shù),再利用“HL”證明Rt△AOD和Rt△AOE全等,根據(jù)全等三角形對應(yīng)邊相等可得OD=OE,同理可得OC=OE,然后求出∠AOB=90°,然后對各選項(xiàng)分析判斷即可得解.
∵點(diǎn)A,B分別是∠NOP,∠MOP平分線上的點(diǎn),∴AD=AE,BC=BE.
∵AB=AE+BE,∴AB=AD+BC,故A選項(xiàng)結(jié)論正確;
與∠CBO互余的角有∠COB,∠EOB,∠OAD,∠OAE共4個(gè),故B選項(xiàng)結(jié)論錯(cuò)誤;
∵點(diǎn)A、B分別是∠NOP、∠MOP平分線上的點(diǎn),∴∠AOE=∠EOD,∠BOC=∠MOE,∴∠AOB=(∠EOD+∠MOE)=×180°=90°,故C選項(xiàng)結(jié)論正確;
在Rt△AOD和Rt△AOE中,,∴Rt△AOD≌Rt△AOE(HL),∴OD=OE,同理可得OC=OE,∴OC=OD=OE,∴點(diǎn)O是CD的中點(diǎn),故D選項(xiàng)結(jié)論正確.
故選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,AB=AC,BD、CD分別平分∠ABC和∠ACB.問:(答題時(shí),注意書寫整潔)
(1)圖①中有幾個(gè)等腰三角形?(寫出來,不需要證明)
(2)過D點(diǎn)作EF∥BC,交AB于E,交AC于F,如圖②,圖中增加了幾個(gè)等腰三角形,選一個(gè)進(jìn)行證明.
(3)如圖③,若將題中的△ABC改為不等邊三角形,其他條件不變,圖中有幾個(gè)等腰三角形?線段EF與BE、CF有什么關(guān)系?(寫出來,不需要證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點(diǎn)M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點(diǎn)P,連結(jié)AP并延長交BC于點(diǎn)D,則下列說法中正確的個(gè)數(shù)是( )
①AD是∠BAC的平分線 ②∠ADC=60°
③點(diǎn)D在AB的垂直平分線上 ④AB=2AC.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市計(jì)劃對某地塊的1000m2區(qū)域進(jìn)行綠化,由甲、乙兩個(gè)工程隊(duì)合作完成.已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)的2倍;若兩隊(duì)分別各完成300m2的綠化時(shí),甲隊(duì)比乙隊(duì)少用3天.
(1)求甲、乙兩工程隊(duì)每天能完成的綠化的面積;
(2)兩隊(duì)合作完成此工程,若甲隊(duì)參與施工x天,試用含x的代數(shù)式表示乙隊(duì)施工的天數(shù)y;
(3)若甲隊(duì)每天施工費(fèi)用是0.6萬元,乙隊(duì)每天為0.2萬元,且要求兩隊(duì)施工的天數(shù)之和不超過16天,應(yīng)如何安排甲、乙兩隊(duì)施工的天數(shù),才能使施工總費(fèi)用最低?并求出最低費(fèi)用時(shí)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=(x+2)2+m的圖象與y軸交于點(diǎn)C,點(diǎn)B在拋物線上,且與點(diǎn)C關(guān)于拋物線的對稱軸對稱,已知一次函數(shù)y=kx+b的圖象經(jīng)過該二次函數(shù)圖象上的點(diǎn)A(﹣1,0)及點(diǎn)B.
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象,寫出滿足(x+2)2+m≥kx+b的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,一個(gè)直角三角板XYZ放置在△ABC上,恰好三角板XYZ的兩條直角邊XY,XZ分別經(jīng)過點(diǎn)B,C,△ABC中,若∠A=30°,則∠ABC+∠ACB=__ __,∠XBC+∠XCB=__ __;
(2)若改變直角三角板XYZ的位置,但三角板XYZ的兩條直角邊XY,XZ仍然分別經(jīng)過點(diǎn)B,C,那么∠ABX+∠ACX的大小是否變化?若變化,請說明理由;若不變化,請求出∠ABX+∠ACX的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com