【題目】如圖,某校一幢教學(xué)大樓的頂部豎有一塊“傳承文明,啟智求真”的宣傳牌CD、小明在山坡的坡腳A處測得宣傳牌底部D的仰角為60°,然后沿山坡向上走到B處測得宣傳牌頂部C的仰角為45°.已知山坡AB的坡度i=1: (斜坡的鉛直高度與水平寬度的比),經(jīng)過測量AB=10米,AE=15米.

(1)求點(diǎn)B到地面的距離;

(2)求這塊宣傳牌CD的高度.(測角器的高度忽略不計(jì),結(jié)果保留根號(hào))

【答案】(1)5;(2)宣傳牌CD高(20﹣10)m.

【解析】試題分析:(1)在RtABH,tanBAH==i==.得到∠BAH=30°,于是得到結(jié)果BH=ABsinBAH=10sin30°=10×=5;

2)在RtABH,AH=ABcosBAH=10cos30°=5.在RtADEtanDAE=,tan60°=,得到DE=15,如圖過點(diǎn)BBFCE,垂足為F求出BF=AH+AE=5+15,于是得到DF=DEEF=DEBH=155.在RtBCF,C=90°﹣CBF=90°﹣45°=45°,求得∠C=CBF=45°,得出CF=BF=5+15,即可求得結(jié)果.

試題解析:(1)在RtABH中,∵tanBAH==i==,∴∠BAH=30°,BH=ABsinBAH=10sin30°=10×=5

點(diǎn)B距水平面AE的高度BH5;

2)在RtABH,AH=ABcosBAH=10cos30°=5.在RtADEtanDAE=,tan60°=,DE=15,如圖,過點(diǎn)BBFCE,垂足為FBF=AH+AE=5+15,DF=DEEF=DEBH=155.在RtBCF,C=90°﹣CBF=90°﹣45°=45°,∴∠C=CBF=45°,CF=BF=5+15CD=CFDF=5+15﹣(155)=2010(米)廣告牌CD的高度約為2010米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一頂點(diǎn)重合的兩個(gè)大小完全相同的邊長為3的正方形ABCD和正方形AB′C′D′,如圖所示,∠DAD′=45°,邊BC與D′C′交于點(diǎn)O,則四邊形ABOD′的周長是(  )

A. 6 B. 6 C. 3 D. 3+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實(shí)踐,

如圖1是某校操場實(shí)物圖,圖2是操場示意圖,每條跑道由兩條直的跑道和兩端是半圓形的跑道組成,每兩條跑道之間的距離是相等的,最內(nèi)側(cè)半圓形跑道的半徑是a米,最外側(cè)半圓形跑道的半徑是b米,每條直道的長度都是c米。

(1)列式表示最內(nèi)側(cè)-圈跑道的長度____.(直接寫出答案, 不寫過程)

(2)列式表示整個(gè)操場所占地面的面積___ . (即最外側(cè)跑道圈住的面積,直接寫出答案,不寫過程)

(3)新學(xué)期,學(xué)校為了給學(xué)生們提供優(yōu)美的校園環(huán)境和鍛煉場所,改造并美化操場,跑道內(nèi)部的長方形部分(圖中陰影部分)設(shè)計(jì)成足球場,這部分地面鋪設(shè)草坪,其余部分(即矩形外部與最外側(cè)跑道之間的部分)鋪設(shè)塑膠.興趣小組測得a=35米,b=40米,c=100米, π3.若草坪每平米60元,塑膠每平米80元,請(qǐng)你計(jì)算鋪設(shè)草坪和塑膠總共花了多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是矩形紙片,AB=2.對(duì)折矩形紙片ABCD,使AD與BC重合,折痕為EF;展平后再過點(diǎn)B折疊矩形紙片,使點(diǎn)A落在EF上的點(diǎn)N,折痕BM與EF相交于點(diǎn)Q再次展平,連接BN,MN,延長MN交BC于點(diǎn)G.有如下結(jié)論:①∠ABN= 60°;②AM=1;③;④△BMG是等邊三角形;⑤P為線段BM上一動(dòng)點(diǎn),H是BN的中點(diǎn),則PN+PH的最小值是.其中正確結(jié)論的序號(hào)是___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分)中國夢(mèng)關(guān)系每個(gè)人的幸福生活,為展現(xiàn)巴中人追夢(mèng)的風(fēng)采,我市某中學(xué)舉行中國夢(mèng)我的夢(mèng)的演講比賽,賽后整理參賽學(xué)生的成績,將學(xué)的成績分為A,BC,D四個(gè)等級(jí),并將結(jié)果繪制成如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,但均不完整,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問題.

1)參加比賽的學(xué)生人數(shù)共有 名,在扇形統(tǒng)計(jì)圖中,表示“D等級(jí)的扇形的圓心角為 度,圖中m的值為

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)組委會(huì)決定從本次比賽中獲得A等級(jí)的學(xué)生中,選出2名去參加市中學(xué)生演講比賽,已知A等級(jí)中男生有1名,請(qǐng)用列表畫樹狀圖的方法求出所選2名學(xué)生中恰好是一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2014四川資陽)如圖,已知直線l1l2,線段AB在直線l1上,BC垂直于l1交l2于點(diǎn)C,且AB=BC,P是線段BC上異于兩端點(diǎn)的一點(diǎn),過點(diǎn)P的直線分別交l2,l1于點(diǎn)D,E(點(diǎn)A,E位于點(diǎn)B的兩側(cè),滿足BP=BE,連接AP,CE.

(1)求證:ABPCBE.

(2)連接AD、BD,BD與AP相交于點(diǎn)F,如圖

當(dāng)時(shí),求證:APBD;

當(dāng)(n>1)時(shí),設(shè)PAD的面積為S1,PCE的面積為S2,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的對(duì)角線交于O點(diǎn),點(diǎn)E,F分別是AO,CO的中點(diǎn),連接BE,BF,DE,DF,則下列結(jié)論中一定成立的是________.(把所有正確結(jié)論的序號(hào)都填在橫線上)

BF=DE;②∠ABO=2ABE;SAED=SACD;④四邊形BFDE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:在ABCD中,EF分別是AD、BC邊的中點(diǎn),G、H是對(duì)角線BD上的兩點(diǎn),且BGDH,則下列結(jié)論中不正確的是( 。

A. GFFHB. GFEH

C. EFAC互相平分D. EGFH

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知∠AOB=,AOC=,OE是∠AOB內(nèi)部的一條射線,且OF平分∠AOE.

(1)若∠EOB=,求∠COF的度數(shù);

(2)若∠COF=,求∠EOB的度數(shù)(用含n的式子表示);

(3)當(dāng)射線OE繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)到如圖2的位置時(shí),請(qǐng)把圖補(bǔ)充完整;此時(shí),∠COF與∠EOB有怎樣的數(shù)量關(guān)系?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案