【題目】平面直角坐標系中,二次函數(shù)yax2+bx+ca0)的圖象如圖所示,現(xiàn)給出下列結(jié)論:①abc0;②c+2a0;③9a3b+c0;④abam2+bmm為實數(shù));⑤4acb20.其中正確結(jié)論的個數(shù)是( 。

A. 2B. 3C. 4D. 5

【答案】C

【解析】

根據(jù)二次函數(shù)的圖象與性質(zhì)即可求出答案.

①由拋物線可知:a0,c0,

對稱軸x=0,

b0

abc0,故①正確;

②由對稱軸可知:=-1,

b=2a,

x=1時,y=a+b+c=0,

c+3a=0,

c+2a=-3a+2a=-a0,故②錯誤;

③(1,0)關(guān)于x=-1的對稱點為(-30),

x=-3時,y=9a-3b+c=0,故③正確;

④當(dāng)x=-1時,y的最小值為a-b+c

x=m時,y=am2+bm+c,

am2+bm+c≥a-b+c,

am2+bm≥a-b,故④正確;

⑤拋物線與x軸有兩個交點,

∴△>0

b2-4ac0,

4ac-b20,故⑤正確;

故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】景觀大道要進行綠化改造,已知購買A種樹苗3棵,B種樹苗4棵,需要370元;購買A種樹苗5棵,B種樹苗2棵,需要430

1)求購買A,B兩種樹苗每棵各需多少元?

2)現(xiàn)需購買這兩種樹苗共100棵,要求購買這兩種樹苗的資金不超過5860元,求最多能購買多少棵A種樹苗?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,RtABC中,∠A90°,ABAC,點DBC邊的中點連接AD,則易證ADBDCD,即ADBC;如圖2,若將題中ABAC這個條件刪去,此時AD仍然等于BC

理由如下:延長ADH,使得AH2AD,連接CH,先證得ABD≌△CHD,此時若能證得ABC≌△CHA,

即可證得AHBC,此時ADBC,由此可見倍長過中點的線段是我們?nèi)切巫C明中常用的方法.

1)請你先證明ABC≌△CHA,并用一句話總結(jié)題中的結(jié)論;

2)現(xiàn)將圖1ABC折疊(如圖3),點A與點D重合,折痕為EF,此時不難看出BDECDF都是等腰直角三角形.BEDE,CFDF.由勾股定理可知DE2+DF2EF2,因此BE2+CF2EF2,若圖2ABC也進行這樣的折疊(如圖4),此時線段BE、CF、EF還有這樣的關(guān)系式嗎?若有,請證明;若沒有,請舉反例.

3)在(2)的條件下,將圖3中的DEF繞著點D旋轉(zhuǎn)(如圖5),射線DEDF分別交ABAC于點E、F,此時(2)中結(jié)論還成立嗎?請說明理由.圖4中的DEF也這樣旋轉(zhuǎn)(如圖6),直接寫出上面的關(guān)系式是否成立.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運算正確的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形中,是對角線的中點,過點的直線分別交的延長線于,.

1)求證:;

2)若,試探究線段與線段之間的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC90°,以AB的中點O為圓心,OA為半徑的圓交AC于點DEBC的中點,連接DEOE

1)判斷DE與⊙O的位置關(guān)系,并說明理由;

2)若cosBADBE12,求OE的長;

3)求證:BC22CDOE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線a≠0)與y軸交與點C0,3),與x軸交于A、B兩點,點B坐標為(4,0),拋物線的對稱軸方程為x=1

1)求拋物線的解析式;

2)點MA點出發(fā),在線段AB上以每秒3個單位長度的速度向B點運動,同時點NB點出發(fā),在線段BC上以每秒1個單位長度的速度向C點運動,其中一個點到達終點時,另一個點也停止運動,設(shè)△MBN的面積為S,點M運動時間為t,試求St的函數(shù)關(guān)系,并求S的最大值;

3)在點M運動過程中,是否存在某一時刻t,使△MBN為直角三角形?若存在,求出t值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組;請結(jié)合題意填空,完成本題的解答.

(Ⅰ)解不等式①,得____________________;

(Ⅱ)解不等式②,得____________________;

(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:

(Ⅳ)原不等式組的解集為_______________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,點O為坐標原點,點A(﹣2,2)和點B(﹣3,﹣2)的位置如圖所示.

(1)作出線段AB關(guān)于y軸對稱的線段A′B′,并寫出點A、B的對稱點A′、B′的坐標;

(2)連接AA′BB′,請在圖中畫一條線段,將圖中的四邊形AA′B′B分成兩個圖形,其中一個是軸對稱圖形,另一個是中心對稱圖形,并且線段的一個端點為四邊形的頂點,另一個端點在四邊形一邊的格點上.(每個小正方形的頂點均為格點).

查看答案和解析>>

同步練習(xí)冊答案