如圖,△中,,.是的中點(diǎn),⊙與AC,BC分別相切于點(diǎn)與點(diǎn).與的一個(gè)交點(diǎn)為F,連結(jié)并延長交的延長線于點(diǎn).若=,則__.
【解析】
試題分析:連接OD,由AC為圓O的切線,根據(jù)切線的性質(zhì)得到OD與AC垂直,又AC=BC,且∠C=90°,得到三角形ABC為等腰直角三角形,得到∠A=45°,在直角三角形ABC中,由AC與BC的長,根據(jù)AB的長,又O為AB的中點(diǎn),從而得到AO等于BO都等于AB的一半,求出AO與BO的長,再由OB-OF求出FB的長,同時(shí)由OD和GC都與AC垂直,得到OD與GC平行,得到一對(duì)內(nèi)錯(cuò)角相等,再加上對(duì)頂角相等,由兩對(duì)對(duì)應(yīng)角相等的兩三角形相似得到三角形ODF與三角形GBF相似,由相似得比例,把OD,OF及FB的長代入即可求出GB的長.
連接OD
∵CD切⊙O于點(diǎn)D,
∴∠ODA=90°,∠DOA=45°,
∵OD=OF,
∴∠ODF=∠OFD=∠DOA=22.5°,
∴∠CDG=∠CDO-∠ODF=90°-22.5°=67.5°.
∵AC為圓O的切線,
∴OD⊥AC,
又∵O為AB的中點(diǎn),
∴AO=BO=AB=2,
∴圓的半徑DO=FO=AOsinA=2×=2,
∴BF=OB-OF=2-2.
∵GC⊥AC,OD⊥AC,
∴OD∥CG,
∴∠ODF=∠G,又∠OFD=∠BFG,
∴△ODF∽△BGF,
考點(diǎn):切圓的綜合知識(shí)
點(diǎn)評(píng):圓與相似三角形,及三角函數(shù)相融合的解答題、與切線有關(guān)的性質(zhì)與判定有關(guān)的證明題是近幾年中考的熱點(diǎn),故要求學(xué)生把所學(xué)知識(shí)融匯貫穿,靈活運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在△中,點(diǎn)分別是的中點(diǎn),則下列結(jié)論:①;②△∽△;③其中正確的有( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在△中,點(diǎn)分別是的中點(diǎn),則下列結(jié)論:①;②△∽△;③其中正確的有( )
A.3個(gè) B.2個(gè) C.1個(gè) D.0個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年初中數(shù)學(xué)湘教版九年級(jí)上冊(cè)第3章練習(xí)卷(解析版) 題型:選擇題
如圖,在△中,點(diǎn)分別是的中點(diǎn),則下列結(jié)論:①;②△∽△;③其中正確的有( )
A.3個(gè) B.2個(gè) C.1個(gè) D.0個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市榮昌縣素質(zhì)訓(xùn)練營九年級(jí)上學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:選擇題
如圖,矩形中,,,是的中點(diǎn),點(diǎn)在矩形的邊上沿運(yùn)動(dòng),則的面積與點(diǎn)經(jīng)過的路程之間的函數(shù)關(guān)系用圖象表示大致是下圖中的 ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013屆河南省周口市初一下學(xué)期第九章一元一次不等式組檢測(cè)題 題型:選擇題
如圖,矩形中,,,是的中點(diǎn),點(diǎn)在矩形的邊上沿運(yùn)動(dòng),則的面積與點(diǎn)經(jīng)過的路程之間的函數(shù)關(guān)系用圖象表示大致是下圖中的
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com