已知:如圖,⊙O的直徑AB與弦CD相交于E,,BF⊥AB與弦AD的延長線相交于點F.
(1)求證:CD∥BF;
(2)連接BC,若AD=6,,求⊙O的半徑及弦CD的長.

【答案】分析:(1)由垂徑定理即可推出AB⊥CD,再由題意即可推出CD∥BF;
(2)由AB是⊙O的直徑,可得∠ADB=90°,再由∠A=∠C,推出,根據(jù)AD=6,即可求出BD的長度,根據(jù)AB=8,推出圓的半徑,即可求出DE的長度,然后由直徑AB平分,即可推出CD=2DE=3
解答:解:(1)證明:∵直徑AB平分,
∴AB⊥CD,
∵BF⊥AB,
∴CD∥BF,

(2)連接BD,
∵AB是⊙O的直徑,
∴∠ADB=90°,
在Rt△ADB中,,
在⊙O中,∵∠A=∠C,
,
∵AD=6,
,
在Rt△ADB中,
∴AB=8,
∴⊙O的半徑為 
在Rt△ADB中,∵DE⊥AB,
∴AB•DE=AD•BD,
,
∵直徑AB平分,
∴CD=2DE=3
點評:本題主要考查垂徑定理,解直角三角形,圓周角定理等知識點,關(guān)鍵在于熟練的綜合運用各性質(zhì)定理,認(rèn)真的進(jìn)行計算,采用數(shù)形結(jié)合的思想進(jìn)行正確的分析.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,從地面上的點P測得大樓的某扇窗戶A的仰角為37°,再從點P測得該大樓窗戶A正上方的另一扇精英家教網(wǎng)窗戶B,這時PA平分∠BPC.若點P到大樓的水平距離PC為10米.
(1)求∠BPC的度數(shù);
(2)試求窗戶B到地面的豎直高度BC(精確到0.1米).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南通一模)已知:如圖,直y=2x+b交x軸于點B,交y軸于點C,點A為x軸正半軸上一點,AO=CO,△ABC的面積為12.
(1)求b的值;
(2)若點P是線段AB中垂線上的點,是否存在這樣的點P,使△PBC成為直角三角形?若存在,試直接寫出所有符合條件的點P的坐標(biāo);若不存在,試說明理由;
(3)點Q為線段AB上一個動點(點Q與點A、B不重合),QE∥AC,交BC于點E,以QE為邊,在點B的異側(cè)作正方形QEFG.設(shè)AQ=m,△ABC與正方形QEFG的重疊部分的面積為S,試求S與m之間的函數(shù)關(guān)系式,并寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖1,在平面直角坐標(biāo)系內(nèi),直線l1:y=-x+4與坐標(biāo)軸分別相交于點A、B,與直線l2y=
13
x
相交于點C.
(1)求點C的坐標(biāo);
(2)如圖1,平行于y軸的直線x=1交直線l1于點E,交直線l2于點D,平行于y軸的直x=a交直線l1于點M,交直線l2于點N,若MN=2ED,求a的值;
(3)如圖2,點P是第四象限內(nèi)一點,且∠BPO=135°,連接AP,探究AP與BP之間的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,直y=2x+b交x軸于點B,交y軸于點C,點A為x軸正半軸上一點,AO=CO,△ABC的面積為12.
(1)求b的值;
(2)若點P是線段AB中垂線上的點,是否存在這樣的點P,使△PBC成為直角三角形?若存在,試直接寫出所有符合條件的點P的坐標(biāo);若不存在,試說明理由;
(3)點Q為線段AB上一個動點(點Q與點A、B不重合),QE∥AC,交BC于點E,以QE為邊,在點B的異側(cè)作正方形QEFG.設(shè)AQ=m,△ABC與正方形QEFG的重疊部分的面積為S,試求S與m之間的函數(shù)關(guān)系式,并寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年江蘇省南通市通州區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

已知:如圖,直y=2x+b交x軸于點B,交y軸于點C,點A為x軸正半軸上一點,AO=CO,△ABC的面積為12.
(1)求b的值;
(2)若點P是線段AB中垂線上的點,是否存在這樣的點P,使△PBC成為直角三角形?若存在,試直接寫出所有符合條件的點P的坐標(biāo);若不存在,試說明理由;
(3)點Q為線段AB上一個動點(點Q與點A、B不重合),QE∥AC,交BC于點E,以QE為邊,在點B的異側(cè)作正方形QEFG.設(shè)AQ=m,△ABC與正方形QEFG的重疊部分的面積為S,試求S與m之間的函數(shù)關(guān)系式,并寫出m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案