【題目】如圖,隨著我市鐵路建設(shè)進(jìn)程的加快,現(xiàn)規(guī)劃從A地到B地有一條筆直的鐵路通過(guò),但在附近的C處有一大型油庫(kù),現(xiàn)測(cè)得油庫(kù)C在A地的北偏東60°方向上,在B地的西北方向上,AB的距離為250( +1)米.已知在以油庫(kù)C為中心,半徑為200米的范圍內(nèi)施工均會(huì)對(duì)油庫(kù)的安全造成影響.問(wèn)若在此路段修建鐵路,油庫(kù)C是否會(huì)受到影響?請(qǐng)說(shuō)明理由.

【答案】解:過(guò)點(diǎn)C作CD⊥AB于D,

∵∠BAC=45°,

∴CD=AD,

∵∠ABC=30°,

∴BC=2CD,

設(shè)AD=CD=x,

∴BC=2x,

BD= = x,

∵BD+AD=AB=250( +1)(米),

x+x=250( +1),

∴x=250,

250米>200米.

答:在此路段修建鐵路,油庫(kù)C是不會(huì)受到影響.


【解析】根據(jù)方向角和解直角三角形的應(yīng)用得出關(guān)系量,由圖可知∠BAC=45°,得到CD=AD,由∠ABC=30°,得到BC=2CD,設(shè)AD=CD=x,所以BC=2x,根據(jù)勾股定理得到BD= x,因?yàn)锽D+AD=AB,即 x+x=250( +1),得到x=250,250米>200米.所以在此路段修建鐵路,油庫(kù)C是不會(huì)受到影響.
【考點(diǎn)精析】利用關(guān)于方向角問(wèn)題對(duì)題目進(jìn)行判斷即可得到答案,需要熟知指北或指南方向線與目標(biāo)方向 線所成的小于90°的水平角,叫做方向角.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】去年某省將地處AB兩地的兩所大學(xué)合并成了一所綜合性大學(xué),為了方便A、B兩地師生的交往,學(xué)校準(zhǔn)備在相距2kmAB兩地之間修筑一條筆直公路(即圖中的線段AB),經(jīng)測(cè)量,在A地的北偏東60°方向、B地的西偏北45°方向C處有一個(gè)半徑為0.7km的公園,問(wèn)計(jì)劃修筑的這條公路會(huì)不會(huì)穿過(guò)公園?為什么?(≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把邊長(zhǎng)為3的正方形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)45°得到正方形AB′C′D′,邊BCD′C′交于點(diǎn)O,則四邊形ABOD′的周長(zhǎng)是( )

A. 6B. 6C. 3D. 3+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知某船于上午8點(diǎn)在A處觀測(cè)小島C在北偏東60°方向上.該船以每小時(shí)40海里的速度向東航行到B處,此時(shí)測(cè)得小島C在北偏東30°方向上.船以原速度再繼續(xù)向東航行2小時(shí)到達(dá)小島C的正南方D點(diǎn).求船從A到D一共走了多少海里?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知⊙O的半徑為2,A為⊙O外一點(diǎn),過(guò)點(diǎn)A作⊙O的一條切線AB,切點(diǎn)是B,AO的延長(zhǎng)線交⊙O于點(diǎn)C,若∠BAC=30°,則劣弧 的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】?jī)蓧K等腰直角三角形紙片AOB和COD按圖1所示放置,直角頂點(diǎn)重合在點(diǎn)O處,AB=25,CD=17.保持紙片AOB不動(dòng),將紙片COD繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α(0°<α<90°)角度,如圖2所示.

(1)利用圖2證明AC=BD且AC⊥BD;
(2)當(dāng)BD與CD在同一直線上(如圖3)時(shí),求AC的長(zhǎng)和α的正弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)家發(fā)改委、工業(yè)和信息化部、財(cái)政部公布了節(jié)能產(chǎn)品惠民工程,公交公司積極響應(yīng)將舊車(chē)換成節(jié)能環(huán)保公交車(chē),計(jì)劃購(gòu)買(mǎi)A型和B型兩種環(huán)保型公交車(chē)10輛,其中每臺(tái)的價(jià)格、年載客量如表:

A

B

價(jià)格(萬(wàn)元/臺(tái))

x

y

年載客量/萬(wàn)人次

60

100

若購(gòu)買(mǎi)A型環(huán)保公交車(chē)1輛,B型環(huán)保公交車(chē)2輛,共需400萬(wàn)元;若購(gòu)買(mǎi)A型環(huán)保公交車(chē)2輛,B型環(huán)保公交車(chē)1輛,共需350萬(wàn)元.

1)求x、y的值;

2)如果該公司購(gòu)買(mǎi)A型和B型公交車(chē)的總費(fèi)用不超過(guò)1200萬(wàn)元,且確保10輛公交車(chē)在該線路的年載客量總和不少于680萬(wàn)人次,問(wèn)有哪幾種購(gòu)買(mǎi)方案?

3)在(2)的條件下,哪種方案使得購(gòu)車(chē)總費(fèi)用最少?最少費(fèi)用是多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為4,點(diǎn)E在BC上,四邊形EFGB也是正方形,以B為圓心,BA長(zhǎng)為半徑畫(huà) ,連結(jié)AF,CF,則圖中陰影部分面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,扇形紙片DOE的頂點(diǎn)O與邊AB的中點(diǎn)重合,OD交BC于點(diǎn)F,OE經(jīng)過(guò)點(diǎn)C,且∠DOE=∠B.

(1)證明△COF是等腰三角形,并求出CF的長(zhǎng);
(2)將扇形紙片DOE繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),OD,OE與邊AC分別交于點(diǎn)M,N(如圖2),當(dāng)CM的長(zhǎng)是多少時(shí),△OMN與△BCO相似?

查看答案和解析>>

同步練習(xí)冊(cè)答案