(Figure 1) In the parallelogram ABCD,AD=2AB,a point M is mid- point of segment AD,CE⊥AB,if∠CEM=40°,then the value of∠DME it(  ).

    (A)150°    (B)140°    (C)135°    (D)130°

如圖,連接CM,作MN⊥EC于N.

    ∵ AB⊥CE  ∴MN∥AB,且MN∥CD,從N為梯形AECD的中位數(shù).

    由MN⊥CE,MN是EC邊中線,∴△EMC為等腰△,

    ∴∠ECM=∠MEC=40° ∠EMC=180°-2×40°=100°

    ∵ ∠ECD=∠AEC=90°,∴∠MCD=90°-40°=50°,

    又∵ DC=AD=DM,∴∠MCD=∠DMC=50°,∴

    ∠EMD=∠EMC+∠CMD=100°+50°=150°.選(A)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

If the figure 6 is composed of 24 equilateral triangles,then how many non-congruent distinct right triangles with vertices on the intersecting points are possible in this figure( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)In fig 1,ABCD is a quadrilsteral,E is a point the diagonal BD,EF∥AD,EM∥BC,then the value of
EF
DA
+
EM
BC
is  ( 。
(英漢詞典:fig figure的縮寫,圖;quadrilateral四邊形;diagonal對角線;value數(shù)值;variable變量;to depend on取決于;position位置)
四邊形ABCD中,E是對角線BD上一點,EF∥AD,EM∥BC,則
EF
DA
+
EM
BC
的值為( 。
A、greater than 1(大于1)
B、equal to 1(等于1)
C、less than 1(小于1)
D、variable depending on the position of E(不能確定,與E的位置有關)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

As in figure 2.In the circular ring of which center is point O.if AO⊥BO,and the area of the shadowy part is 25cm2,then the area of the circuiar ring equals to( 。 (π≈3.14)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

As in figure,the area of square ABCD is l69cm2 and the area ofthombus BCPQ is 156cm2.Then the area of the shadow part is( 。ㄓh詞典:square正方形;thombus菱形)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

If a,b and c are sieds(邊) of the△ABC,and a2-bc=a(b-c),then the figure(形狀) of the triangle(三角形) is
等腰三角形
等腰三角形
.(用漢語填寫)

查看答案和解析>>

同步練習冊答案