在?ABCD中,∠BAC=90°,AB=數(shù)學公式,BC=2AB,則AC=________,BD=________,?ABCD的面積是________.

        2
分析:由∠BAC=90°,AB=,BC=2AB,利用勾股定理即可求得AC的長,然后由平形四邊形的性質(zhì),可求得OA的長,則可求得OB的長,繼而求得答案.
解答:∵AB=,BC=2AB,
∴BC=2
∵∠BAC=90°,
∴在Rt△BAC中,AC==,
∵四邊形ABCD是平行四邊形,
∴OA=AC=,OB=BD,
∴在Rt△ABO中,OB==
∴BD=2OB=;
∴S?ABCD=2S△ABC=2×AB•AC=×=2
故答案為:,,2
點評:此題考查了平行四邊形的性質(zhì)以及勾股定理.此題難度不大,注意掌握數(shù)形結(jié)合思想的應用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

11、在?ABCD中,若∠A=3∠B,則∠D=
45°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在?ABCD中,E、F分別為邊AB、CD的中點,連接DE、BF、BD.
(1)求證:△ADE≌△CBF;
(2)求證:四邊形BEDF是平行四邊形;
(3)若AD⊥BD,則四邊形BFDE是什么特殊四邊形?請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在?ABCD中,EF∥AB,MN∥BC,MN與EF交于點O,且O點在對角線上,圖中面積相等的四邊形有(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在?ABCD中,BD為對角線,EF垂直平分BD分別交AD、BC的于點E、F,交BD于點O.

(1)試說明:BF=DE;
(2)試說明:△ABE≌△CDF;
(3)如果在?ABCD中,AB=5,AD=10,有兩動點P、Q分別從B、D兩點同時出發(fā),沿△BAE和△DFC各邊運動一周,即點P自B→A→E→B停止,點Q自D→F→C→D停止,點P運動的路程是m,點Q運動的路程是n,當四邊形BPDQ是平行四邊形時,求m與n滿足的數(shù)量關(guān)系.(畫出示意圖)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在?ABCD中,點E在邊BC上,點F在BC的延長線上,且BE=CF.
(1)求證:∠BAE=∠CDF.
(2)判斷四邊形AEFD的形狀并說明理由.

查看答案和解析>>

同步練習冊答案