【題目】初三一班五個(gè)勞動(dòng)競(jìng)賽小組一天植樹的棵數(shù)是:10,10,12,x,8,如果這組數(shù)據(jù)的眾數(shù)與平均數(shù)相等,那么這組數(shù)據(jù)的中位數(shù)是( )
A. 12 B. 10 C. 9 D. 8
【答案】B
【解析】分析: 眾數(shù)可能是10,也可能是12或8,因此應(yīng)分眾數(shù)是10或者眾數(shù)是12,或者眾數(shù)是8三種情況進(jìn)行討論.
詳解: 當(dāng)眾數(shù)是10時(shí),
∵眾數(shù)與平均數(shù)相等,
∴(10+10+12+x+8)=10,解得x=10.
這組數(shù)據(jù)為:8,10,10,10,12,
∴中位數(shù)為10;
當(dāng)眾數(shù)是12時(shí),∵眾數(shù)與平均數(shù)相等,
∴(10+10+12+x+8)=12,此題解出x=20,故不可能;
當(dāng)眾數(shù)是8時(shí),∵眾數(shù)與平均數(shù)相等,
∴(10+10+12+x+8)=8,此題解出x=0,故不可能.
所以這組數(shù)據(jù)中的中位數(shù)是10.
故選B.
點(diǎn)睛: 本題考查了眾數(shù)、平均數(shù)、中位數(shù)的求法及分類討論的數(shù)學(xué)思想,正確運(yùn)用分類討論的思想是解答本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P是正△ABC內(nèi)的一點(diǎn),且PA=6,PB=8,PC=10.若將△PAC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后,得到△P′AB.
(1)求旋轉(zhuǎn)角的度數(shù);
(2)求點(diǎn)P與點(diǎn)P′之間的距離;
(3)求∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某蒜薹生產(chǎn)基地喜獲豐收,收獲蒜薹200噸.經(jīng)市場(chǎng)調(diào)查,可采用批發(fā)、零售、冷庫(kù)儲(chǔ)藏后銷售三種方式,并按這三種方式銷售,計(jì)劃平均每噸的售價(jià)及成本如下表:
銷售方式 | 批發(fā) | 零售 | 儲(chǔ)藏后銷售 |
售價(jià)(元/噸) | 3000 | 4500 | 5500 |
成本(元/噸) | 700 | 1000 | 1200 |
若經(jīng)過(guò)一段時(shí)間,蒜薹按計(jì)劃全部售出獲得的總利潤(rùn)為y(元),蒜薹零售x(噸),且零售量是批發(fā)量的.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)由于受條件限制,經(jīng)冷庫(kù)儲(chǔ)藏售出的蒜薹最多80噸,求該生產(chǎn)基地按計(jì)劃全部售完蒜薹獲得的最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)軸上有A、B、C三點(diǎn),分別表示有理數(shù)-26、-10、10,動(dòng)點(diǎn)P從A出發(fā),以每秒1個(gè)單位的速度向終點(diǎn)C移動(dòng),設(shè)點(diǎn)P移動(dòng)時(shí)間為t秒.
(1)用含t的代數(shù)式表示P到點(diǎn)A和點(diǎn)C的距離:PA=________,PC=_____________
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到B點(diǎn)時(shí),點(diǎn)Q從A點(diǎn)出發(fā),以每秒3個(gè)單位的速度向C點(diǎn)運(yùn)動(dòng),Q點(diǎn)到達(dá)C點(diǎn)后,再立即以同樣的速度返回點(diǎn)A,當(dāng)點(diǎn)Q開始運(yùn)動(dòng)后,請(qǐng)用t的代數(shù)式表示P、Q兩點(diǎn)間的距離。(友情提醒:注意考慮P、Q的位置)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若兩個(gè)二次函數(shù)圖象的頂點(diǎn)、開口方向都相同,則稱這兩個(gè)二次函數(shù)為“同簇二次函數(shù)”.
(1)請(qǐng)寫出兩個(gè)為“同簇二次函數(shù)”的函數(shù);
(2)已知關(guān)于x的二次函數(shù)y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的圖象經(jīng)過(guò)點(diǎn)A(1,1),若y1+y2與y1為“同簇二次函數(shù)”,求函數(shù)y2的表達(dá)式,并求出當(dāng)0≤x≤3時(shí),y2的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A點(diǎn)的初始位置位于數(shù)軸上表示1的點(diǎn),現(xiàn)對(duì)A點(diǎn)做如下移動(dòng):第1次向左移動(dòng)3個(gè)單位長(zhǎng)度至B點(diǎn),第2次從B點(diǎn)向右移動(dòng)6個(gè)單位長(zhǎng)度至C點(diǎn),第3次從C點(diǎn)向左移動(dòng)9個(gè)單位長(zhǎng)度至D點(diǎn),第4次從D點(diǎn)向右移動(dòng)12個(gè)單位長(zhǎng)度至E點(diǎn),…,依此類推.這樣第_____次移動(dòng)到的點(diǎn)到原點(diǎn)的距離為2018.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某中學(xué)舉辦“網(wǎng)絡(luò)安全知識(shí)答題競(jìng)賽”,初、高中部根據(jù)初賽成績(jī)各選出5名選手組成初中代表隊(duì)和高中代表隊(duì)參加學(xué)校決賽,兩個(gè)隊(duì)各選出的5名選手的決賽成績(jī)?nèi)鐖D所示.
平均分(分) | 中位數(shù)(分) | 眾數(shù)(分) | 方差(分2) | |
初中部 | a | 85 | b | s初中2 |
高中部 | 85 | c | 100 | 160 |
(1)根據(jù)圖示計(jì)算出a、b、c的值;
(2)結(jié)合兩隊(duì)成績(jī)的平均數(shù)和中位數(shù)進(jìn)行分析,哪個(gè)隊(duì)的決賽成績(jī)較好?
(3)計(jì)算初中代表隊(duì)決賽成績(jī)的方差s初中2,并判斷哪一個(gè)代表隊(duì)選手成績(jī)較為穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線AB:y=5x﹣5與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,點(diǎn)C與點(diǎn)B關(guān)于原點(diǎn)O對(duì)稱,拋物線y=ax2+bx+c的對(duì)稱軸為直線x=3且過(guò)點(diǎn)A和C.
(1)求點(diǎn)A和點(diǎn)C的坐標(biāo);
(2)求拋物線y=ax2+bx+c的解析式;
(3)若拋物線y=ax2+bx+c的頂點(diǎn)為D,且在x軸上存在點(diǎn)P使得△DAP的面積為6,直接寫出滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com