【題目】已知反比例函數(shù)y1=的圖象與一次函數(shù)y2=ax+b的圖象交于點A(1,4)和點B(m,-2).
(1)求這兩個函數(shù)的表達(dá)式;
(2)根據(jù)圖象直接寫出一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.
【答案】(1)y=2x+2,y=;(2) -2<x<0或x>1.
【解析】試題分析:(1)由A在反比例函數(shù)圖象上,把A的坐標(biāo)代入反比例解析式,即可得出反比例函數(shù)解析式,又B也在反比例函數(shù)圖象上,把B的坐標(biāo)代入確定出的反比例解析式即可確定出m的值,從而得到B的坐標(biāo),由待定系數(shù)法即可求出一次函數(shù)解析式;
(2)根據(jù)題意,結(jié)合圖象,找一次函數(shù)的圖象在反比例函數(shù)圖象上方的區(qū)域,易得答案.
試題解析:(1)∵A(1,4)在反比例函數(shù)圖象上,
∴把A(1,4)代入反比例函數(shù)y1=得:4=,解得k1=4,
∴反比例函數(shù)解析式為y1=,
又B(m,﹣2)在反比例函數(shù)圖象上,
∴把B(m,﹣2)代入反比例函數(shù)解析式,
解得m=﹣2,即B(﹣2,﹣2),
把A(1,4)和B坐標(biāo)(﹣2,﹣2)代入一次函數(shù)解析式y2=ax+b得:
,
解得:,
∴一次函數(shù)解析式為y2=2x+2;
(2)根據(jù)圖象得:﹣2<x<0或x>1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由中國發(fā)起創(chuàng)立的“亞洲基礎(chǔ)設(shè)施投資銀行”的法定資本金為100 000 000 000美元,用科學(xué)記數(shù)法表示為美元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,分別與相交于點,連接,現(xiàn)給出兩個命題:
①若,則;
②若,記的面積為,四邊形的面積為,則,那么( )
A.①是真命題,②是假命題 B.①是假命題,②是真命題
C.①是假命題,②是假命題 D.①是真命題,②是真命題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】規(guī)定:對于任意實數(shù)a,b都有:a⊕b=a(a-b)+1,其中等式右邊是通常的加法、減法及乘法運算.如:2⊕5=2×(2-5)+1=2×(-3)+1=-5,那么等式3⊕x=16的解是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角三角形中,,,是的中點,,分別是,上的點(點不與端點重合),且,連接并取的中點,連接并延長至點,使,連接.
(1)求證:四邊形是正方形;
(2)當(dāng)點在什么位置是,四邊形的面積最小?并求四邊形面積的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,給出下列結(jié)論:
①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正確的個數(shù)有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】老師想知道某校學(xué)生每天上學(xué)路上要花多少時間,于是隨機(jī)選取30名同學(xué)每天來校的大致時間(單位:分鐘)進(jìn)行統(tǒng)計,統(tǒng)計表如下:
時間 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 45 |
人數(shù) | 3 | 3 | 6 | 12 | 2 | 2 | 1 | 1 |
(1)寫出這組數(shù)據(jù)的中位數(shù)和眾數(shù);
(2)求這30名同學(xué)每天上學(xué)的平均時間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com