【題目】如圖,六邊形ABCDEF的內(nèi)角都相等,∠FAD60°

1)求∠ADE的度數(shù);

2)求證:EFBC

【答案】(1)∠ADE60°;(2)詳見解析.

【解析】

1)由于六邊形的內(nèi)角和為720°,然后利用六邊形ABCDEF的內(nèi)角都相等得到每個內(nèi)角的度數(shù)為120°,而∠DAB60°,四邊形ABCD的內(nèi)角和為360°,由此即可分別求出∠CDA和∠EDA,最后利用平行線的判定方法即可推知ABDE,根據(jù)平行線的性質(zhì)即可得到結(jié)論;

2)根據(jù)平行線的判定即可得到結(jié)論.

1)∵六邊形ABCDEF的內(nèi)角都相等,

∴∠BAF=∠B=∠C=∠CDE=∠E=∠F120°

∵∠FAD60°,

∴∠F+FAD180°

EFAD,

∴∠E+ADE180°

∴∠ADE60°;

2)∵∠BAD=∠FAB﹣∠FAD60°

∴∠BAD+B180°,

ADBC,

EFBC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,關(guān)于x的分式方程1

1)當(dāng)m=﹣1時,請判斷這個方程是否有解并說明理由;

2)若這個分式方程有實數(shù)解,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在折紙活動中,小李制作了一張ABC的紙片,點D,E分別在邊AB,AC上,將ABC沿著DE折疊壓平,AA'重合.

1)若∠B50°,∠C60°,求∠A的度數(shù);

2)若∠1+2130°,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖表示玲玲騎自行車離家的距離與時間的關(guān)系.9點離開家,15點回到家,請根據(jù)圖象回答下列問題:

(1)玲玲到達(dá)離家最遠(yuǎn)的地方是什么時間?她離家多遠(yuǎn)?

(2)她何時開始第一次休息?休息了多長時間?

(3)第一次休息時,她離家多遠(yuǎn)?

(4)11點~12點她騎車前進(jìn)了多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABO中,∠BAO90°,AOAB,BO8,點A的坐標(biāo)(﹣8,0),點C在線段AO上以每秒2個單位長度的速度由AO運動,運動時間為t秒,連接BC,過點AADBC,垂足為點E,分別交BO于點F,交y軸于點 D

1)用t表示點D的坐標(biāo)   ;

2)如圖1,連接CF,當(dāng)t2時,求證:∠FCO=∠BCA;

3)如圖2,當(dāng)BC平分∠ABO時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)表中的信息判斷,下列語句中正確的是(

x

15

15.1

15.2

15.3

15.4

15.5

15.6

15.7

15.8

15.9

16

x2

225

228.01

231.04

234.09

237.16

240.25

243.36

246.49

249.64

252.81

256

A.

B.235的算術(shù)平方根比15.3

C.只有3個正整數(shù)n滿足15.5

D.根據(jù)表中數(shù)據(jù)的變化趨勢,可以推斷出16.12將比256增大3.19

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線x軸于點A,交y軸于點B,交直線于點C,點D與點B關(guān)于x軸對稱,連接AD交直線于點E

填空:______

求直線AD的解析式;

x軸上存在一點P,則的和最小為______;直接填空即可

當(dāng)時,點Qy軸上的一個動點,使得為等腰直角三角形,求點Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家發(fā)改委、工業(yè)和信息化部、財政部公布了節(jié)能產(chǎn)品惠民工程,公交公司積極響應(yīng)將舊車換成節(jié)能環(huán)保公交車,計劃購買A型和B型兩種環(huán)保型公交車10輛,其中每臺的價格、年載客量如表:

A

B

價格(萬元/臺)

x

y

年載客量/萬人次

60

100

若購買A型環(huán)保公交車1輛,B型環(huán)保公交車2輛,共需400萬元;若購買A型環(huán)保公交車2輛,B型環(huán)保公交車1輛,共需350萬元.

1)求x、y的值;

2)如果該公司購買A型和B型公交車的總費用不超過1200萬元,且確保10輛公交車在該線路的年載客量總和不少于680萬人次,問有哪幾種購買方案?

3)在(2)的條件下,哪種方案使得購車總費用最少?最少費用是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=-x2+bx+c的圖象與x軸交于A、B兩點,與y軸交于C(0,3),A點在原點的左側(cè),B點的坐標(biāo)為(3,0).點P是拋物線上一個動點,且在直線BC的上方.

(1)求這個二次函數(shù)的表達(dá)式.
(2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點P,使四邊形POP′C為菱形?若存在,請求出此時點P的坐標(biāo);若不存在,請說明理由.
(3)當(dāng)點P運動到什么位置時,四邊形 ABPC的面積最大,并求出此時點P的坐標(biāo)和四邊形面積的最大值。

查看答案和解析>>

同步練習(xí)冊答案