解:(1)C(0,2) , D(1,2); | |
(2)由y=-2x+4求得B(0,4),A(0,2), 如圖①,折疊后點B與點A重合, 則△ACD≌△BCD,BD=DA, 由(1)得D的坐標為(1,2), 設點C的坐標為(0,m)(m>0), 則BC=OB-OC=4-m, 于是AC=BC=4-m, 在Rt△AOC中,由勾股定理,得AC2=OC2+OA2, 即(4-m)2=m2+22, 解得, ∴點C的坐標為,D的坐標為(1,2); |
|
(3)如圖②,折疊后點B落在OA邊上的點為B', 且B'D∥OB, 則△B'CD≌△BCD,∠OCB'=∠CB'D, 又∵∠CBD=∠CB'D, ∴∠OCB'=∠CBD, 有CB'∥BA, ∴Rt△COB'∽Rt△BOA, 有, 得OC=2OB', 在Rt△B'OC中, 設OB'=x0(x>0),則OC=2x0, 則B'C=BC=OB-OC=4-2x0, 在Rt△B'OC中,由勾股定理,得B'C2=OC2+OB'2, ∴(4-2x0)2=(2x0)2+x02, 得x20+16x0-16=0, 解得, ∵x0>0, ∴, ∴點C的坐標為, ∵B'D∥OB, 則可得點D的橫坐標為, 設點D的縱坐標為n, ∵點D在直線y=-2x+4上, ∴, ∴點D的坐標為。 |
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源:新海實驗中學2008年中考第一次模擬考試數(shù)學試題 題型:013
如圖,將一個直角三角形紙片(∠ACB=90°),沿線段CD折疊,使點B落在點B1處,若∠ACB1=70°,則∠ACD的度數(shù)為
A.10°
B.15°
C.20°
D.25°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源:2011年《海峽教育報》初中數(shù)學綜合練習(二)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com