【題目】某農(nóng)戶要改造部分農(nóng)田種植蔬菜.經(jīng)調(diào)查,平均每畝改造費(fèi)用是900元,添加輔助設(shè)備費(fèi)用(元)與改造面積(畝)的平方成正比,比例系數(shù)為18,以上兩項(xiàng)費(fèi)用三年內(nèi)不需再投入;每畝種植蔬菜還需種子、人工費(fèi)用600元,這項(xiàng)費(fèi)用每年均需再投入,除上述費(fèi)用外,沒有其他費(fèi)用,設(shè)改造畝,每畝蔬菜年銷售額為元.

1)設(shè)改造當(dāng)年收益為元,用含,的式子表示;

2)按前三年計(jì)算,若,是否改造面積越大收益越大?改造面積為多少時(shí),可以得到最大收益?

3)若,按前三年計(jì)算,能確保改造的面積越大收益也越大,求的取值范圍.

注:收益=銷售額-(改造費(fèi)+輔助設(shè)備費(fèi)+種子、人工費(fèi)).

【答案】1;(2)不是,50;(3

【解析】

解:(1

2)按前3年計(jì)算,當(dāng)時(shí),

當(dāng)時(shí),收益隨改造面積增大而增大,當(dāng)時(shí),收益隨改造面積增大而減小,

∴不是改造面積越大收益越大,當(dāng)改造面積為50畝時(shí),收益最大;

3)按前三年計(jì)算,則,

該拋物線開口向下,當(dāng)保證在時(shí),的增大而增大,

則對(duì)稱軸,解得

∴當(dāng)時(shí),能確保改造的面積越大收益也越大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)為了美化環(huán)境,計(jì)劃分兩次購進(jìn)A,B兩種花,第一次分別購進(jìn)A,B兩種花30棵和15棵,共花費(fèi)675元;第二次以同樣的單價(jià)分別購進(jìn)A、B兩種花12棵和5棵,第二次花費(fèi)265元.

(1)求A、B兩種花的單價(jià)分別是多少元?

(2)若購買A、B兩種花共31棵,且B種花的數(shù)量不多于A種花的數(shù)量的2倍,請(qǐng)你給出一種費(fèi)用最省的方案,并求出該方案所需費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線分別與x軸,y軸交于點(diǎn)A,B兩點(diǎn),點(diǎn)COB的中點(diǎn),拋物線經(jīng)過A,C兩點(diǎn).

1)求拋物線的函數(shù)表達(dá)式;

2)點(diǎn)D是直線AB下方的拋物線上的一點(diǎn),且的面積為,求點(diǎn)D的坐標(biāo);

3)點(diǎn)P為拋物線上一點(diǎn),若是以AB為直角邊的直角三角形,求點(diǎn)P到拋物線的對(duì)稱軸的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y1=x+ax軸、y軸分別交于點(diǎn)DC兩點(diǎn)和反比例函數(shù)交于A、B兩點(diǎn),且點(diǎn)A的坐標(biāo)是(1,3),點(diǎn)B的坐標(biāo)是(3,m)

1)求a,k,m的值;

2)求C、D兩點(diǎn)的坐標(biāo),并求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司計(jì)劃投入50萬元,開發(fā)并生產(chǎn)甲乙兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查預(yù)計(jì)甲產(chǎn)品的年獲利y1(萬元)與投入資金x(萬元)成正比例,乙產(chǎn)品的年獲利y2(萬元)與投入資金x(萬元)的平方成正比例,設(shè)該公司投入乙產(chǎn)品x(萬元),兩種產(chǎn)品的年總獲利為y萬元(x≥0),得到了表中的數(shù)據(jù).

x(萬元)

20

30

y(萬元)

10

13

(1)求yx的函數(shù)關(guān)系式;

(2)該公司至少可獲得多少利潤(rùn)?請(qǐng)你利用所學(xué)的數(shù)學(xué)知識(shí)對(duì)該公司投入資金的分配提出合理化建

議,使他能獲得最大利潤(rùn),并求出最大利潤(rùn)是多少?

(3)若從年總利潤(rùn)扣除投入乙產(chǎn)品資金的a倍(a≤1)后,剩余利潤(rùn)隨x增大而減小,求a的取值

范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】凈揚(yáng)水凈化有限公司用160萬元,作為新產(chǎn)品的研發(fā)費(fèi)用,成功研制出了一種市場(chǎng)急需的小型水凈化產(chǎn)品,已于當(dāng)年投入生產(chǎn)并進(jìn)行銷售.已知生產(chǎn)這種小型水凈化產(chǎn)品的成本為4/件,在銷售過程中發(fā)現(xiàn):每年的年銷售量(萬件)與銷售價(jià)格x(元/件)的關(guān)系如圖所示,其中AB為反比例函數(shù)圖象的一部分,BC為一次函數(shù)圖象的一部分.設(shè)公司銷售這種水凈化產(chǎn)品的年利潤(rùn)為z(萬元).(注:若上一年盈利,則盈利不計(jì)入下一年的年利潤(rùn);若上一年虧損,則虧損計(jì)作下一年的成本.)

1)請(qǐng)求出y(萬件)與x(元/件)之間的函數(shù)關(guān)系式;

2)求出第一年這種水凈化產(chǎn)品的年利潤(rùn)z(萬元)與x(元/件)之間的函數(shù)關(guān)系式,并求出第一年年利潤(rùn)的最大值;

3)假設(shè)公司的這種水凈化產(chǎn)品第一年恰好按年利潤(rùn)z(萬元)取得最大值時(shí)進(jìn)行銷售,現(xiàn)根據(jù)第一年的盈虧情況,決定第二年將這種水凈化產(chǎn)品每件的銷售價(jià)格x(元)定在8元以上(),當(dāng)?shù)诙甑哪昀麧?rùn)不低于103萬元時(shí),請(qǐng)結(jié)合年利潤(rùn)z(萬元)與銷售價(jià)格x(元/件)的函數(shù)示意圖,求銷售價(jià)格x(元/件)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,平分,平分,相交于點(diǎn),且,則__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了創(chuàng)建全國衛(wèi)生城市,某社區(qū)要清理一個(gè)衛(wèi)生死角內(nèi)的垃圾,租用甲、乙兩車運(yùn)送.若兩車合作,各運(yùn)12趟才能完成,需支付運(yùn)費(fèi)共4800元;若甲、乙兩車單獨(dú)運(yùn)完此堆垃圾,則乙車所運(yùn)趟數(shù)是甲車的2倍;已知乙車每趟運(yùn)費(fèi)比甲車少200元.

探究:

1)分別求出甲、乙兩車每趟的運(yùn)費(fèi);

2)若單獨(dú)租用甲車運(yùn)完此堆垃圾,需運(yùn)多少趟;

發(fā)現(xiàn):若同時(shí)租用甲、乙兩車,則甲車運(yùn)x趟,乙車運(yùn)y趟,才能運(yùn)完此堆垃圾,其中均為正整數(shù).

1)當(dāng)時(shí),______;當(dāng)時(shí),______

2)求yx之間滿足的函數(shù)關(guān)系式.

決策:在“發(fā)現(xiàn)”的條件下,設(shè)總運(yùn)費(fèi)為w(元).

1)求wx之間滿足的函數(shù)關(guān)系式,當(dāng)x取何值時(shí),w取得最小值;

2)當(dāng)時(shí),甲車每趟的運(yùn)費(fèi)打7折,乙車每趟的運(yùn)費(fèi)打9折,當(dāng)x取何值時(shí),w取得最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以ABC的邊AC為直徑的O恰為ABC的外接圓,ABC的平分線交O于點(diǎn)D,過點(diǎn)D作DEAC交BC的延長(zhǎng)線于點(diǎn)E.

(1)求證:DE是O的切線;

(2)若AB=25,BC=,求DE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案