【題目】已知:如圖,ABC內(nèi)接于⊙O,AF是⊙O的弦,AFBC,垂足為D,點E為上一點,且BE=CF,

1)求證:AE是⊙O的直徑;

2)若∠ABC=EAC,AE=4,求AC的長.

【答案】1)見解析;(2AC=2.

【解析】

1)由BE=CF,則可證得∠BAE=FAC,根據(jù)圓周角定理和等角的余角相等證明即可;
2)連接OC,根據(jù)圓周角定理證明AOC是等腰直角三角形,由勾股定理即可求得.

1)證明:∵BE=CF
,
∴∠BAE=CAF,
AFBC,
∴∠ADC=90°
∴∠FAC+ACD=90°,
∵∠E=ACD,
∴∠BAE+E=90°
∴∠ABE=90°,
AE是⊙O的直徑 .
2)解:連結(jié)OC,


∴∠AOC=2ABC,
∵∠ABC=CAE,
∴∠AOC=2CAE,
OA=OA,
∴∠CAO=ACO=AOC,
∴△AOC為等腰直角三角形,
AE=4,
AO=CO=2,
AC=.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】我市某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進價為40元,若銷售價為60元,每天可售出20件,為迎接雙十一,專賣店決定采取適當?shù)慕祪r措施,以擴大銷售量,經(jīng)市場調(diào)查發(fā)現(xiàn),如果每件童裝降價1元,那么平均可多售出2設每件童裝降價x時,平均每天可盈利y元.

寫出yx的函數(shù)關(guān)系式;

當該專賣店每件童裝降價多少元時,平均每天盈利400元?

該專賣店要想平均每天盈利600元,可能嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線Lx軸與點A,交y軸與點B,點Cx軸正半軸上,且OC=2,點D在線段AC上,且∠CDB=ABC,過點CBC的垂線,交BD的延長線與點E,并聯(lián)結(jié)AE

1)求證:△CDB∽△CBA

2)求點E的坐標

3)若點P是直線CE上的一動點,聯(lián)結(jié)DP若△DEP和△ABC相似,求點P的坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一個拋物線形的拱形橋洞,橋面離水面的距離為5.6米,橋洞離水面的最大高度為,跨度為,如圖所示,把它的圖形放在直角坐標系中.

1)求這條拋物線所對應的函數(shù)關(guān)系式.

2)如圖,在對稱軸右邊處,橋洞離橋面的高是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)yax2+bx+2的圖象交x軸于點A(﹣10),點B40)兩點,交y軸于點C.動點M從點A出發(fā),以每秒2個單位長度的速度沿AB方向運動,過點MMNx軸交直線BC于點N,交拋物線于點D,連接AC,設運動的時間為t秒.

1)求二次函數(shù)yax2+bx+2的表達式;

2)連接BD,當t時,求DNB的面積;

3)在直線MN上存在一點P,當PBC是以∠BPC為直角的等腰直角三角形時,求此時點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線的對稱軸為直線,與軸的一個交點在之間,其部分圖象如圖所示.則下列結(jié)論:;②;③;④為實數(shù));,,是該拋物線上的點,則,正確的個數(shù)有(

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果三角形的兩個內(nèi)角αβ滿足2α+β=90°,那么我們稱這樣的三角形為準互余三角形”.

(1)若ABC準互余三角形”,C>90°,A=60°,則∠B=   °;

(2)如圖①,在RtABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分線,不難證明ABD準互余三角形.試問在邊BC上是否存在點E(異于點D),使得ABE也是準互余三角形?若存在,請求出BE的長;若不存在,請說明理由.

(3)如圖②,在四邊形ABCD中,AB=7,CD=12,BDCD,ABD=2BCD,且ABC準互余三角形,求對角線AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,ABCD,∠B=90°,AB=1,CD=2,BC=m,點P是邊BC上一動點,若△PAB與△PCD相似,且滿足條件的點P恰有2個,則m的值為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知A(2,0)、B(3,1)、C(1,3).

(1)畫出ABC沿x軸負方向平移2個單位后得到的△A1B1C1,并寫出B1的坐標   

(2)以A1點為旋轉(zhuǎn)中心,將△A1B1C1逆時針方向旋轉(zhuǎn)90°得△A1B2C2,畫出△A1B2C2,并寫出C2的坐標   ;

(3)直接寫出過B、B1、C2三點的圓的圓心坐標為   

查看答案和解析>>

同步練習冊答案