【題目】如圖1,將矩形紙片ABCD沿對(duì)角線BD向上折疊,點(diǎn)C落在點(diǎn)E處,BE交AD于點(diǎn)F.
(1)求證:BF=DF;
(2)如圖2,過點(diǎn)D作DG∥BE交BC于點(diǎn)G,連接FG交BD于點(diǎn)O,若AB=6,AD=8,求FG的長(zhǎng).
【答案】(1)證明見解析;(2).
【解析】
(1)根據(jù)兩直線平行內(nèi)錯(cuò)角相等及折疊特性判斷;
(2)根據(jù)已知矩形性質(zhì)及第一問證得鄰邊相等判斷四邊形BFDG是菱形,再根據(jù)折疊特性設(shè)未知邊,構(gòu)造勾股定理列方程求解.
(1)證明:根據(jù)折疊得,∠DBC=∠DBE,
又AD∥BC,
∴∠DBC=∠ADB,
∴∠DBE=∠ADB,
∴DF=BF;
(2)∵四邊形ABCD是矩形,
∴AD∥BC,
∴FD∥BG,
又∵DG∥BE,
∴四邊形BFDG是平行四邊形,
∵DF=BF,
∴四邊形BFDG是菱形;
∵AB=6,AD=8,
∴BD=10.
∴OB= BD=5.
假設(shè)DF=BF=x,∴AF=AD-DF=8-x.
∴在直角△ABF中,AB2+AF2=BF2,即62+(8-x)2=x2,
解得x=,
即BF=,
∴,
∴FG=2FO=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:點(diǎn)A、B在數(shù)軸上分別表示有理數(shù)a、b,表示A、B兩點(diǎn)之間的距離。當(dāng)A、B兩點(diǎn)中有一點(diǎn)在原點(diǎn)時(shí)(假設(shè)A在原點(diǎn)),如圖①,;
當(dāng)A、B兩點(diǎn)都在原點(diǎn)右側(cè)時(shí),如圖②,;
當(dāng)AB兩點(diǎn)都在原點(diǎn)左側(cè)時(shí),如圖③,;
當(dāng)AB兩點(diǎn)在原點(diǎn)兩側(cè)時(shí),如圖④,;
請(qǐng)根據(jù)上述結(jié)論,回答下列問題:
(1)數(shù)軸上表示2和5的兩點(diǎn)問距離是______,數(shù)軸上表示2和-6的兩點(diǎn)間距高是_________,數(shù)軸上表示-1和3的兩點(diǎn)間距離是____________.
(2)數(shù)軸上表示x和-1的兩點(diǎn)A和B之間的距離可表示為_________,若|AB|=2,則x的值為_____________.
(3)當(dāng)取最小值時(shí),請(qǐng)寫出所有符合條件的x的整數(shù)值_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了增強(qiáng)學(xué)生體質(zhì),全面實(shí)施“學(xué)生飲用奶”營(yíng)養(yǎng)工程.某品牌牛奶供應(yīng)商提供了原味、草莓味、菠蘿味、香橙味、核桃味五種口味的牛奶提供學(xué)生飲用.浠馬中學(xué)為了了解學(xué)生對(duì)不同口味牛奶的喜好,對(duì)全校訂購牛奶的學(xué)生進(jìn)行了隨機(jī)調(diào)查(每盒各種口味牛奶的體積相同),繪制了如圖兩張不完整的人數(shù)統(tǒng)計(jì)圖:
(1)本次被調(diào)查的學(xué)生有 名;
(2)補(bǔ)全上面的條形統(tǒng)計(jì)圖1,并計(jì)算出喜好“菠蘿味”牛奶的學(xué)生人數(shù)在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù);
(3)該校共有1200名學(xué)生訂購了該品牌的牛奶,牛奶供應(yīng)商每天只為每名訂購牛奶的學(xué)生配送一盒牛奶.要使學(xué)生每天都喝到自己喜好的口味的牛奶,牛奶供應(yīng)商每天送往該校的牛奶中,草莓味要比原味多送多少盒?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=-3x+3與坐標(biāo)軸分別交于A,B兩點(diǎn),以線段AB為邊,在第一象限內(nèi)作正方形ABCD,直線y=3x-2與y軸交于點(diǎn)F,與線段AB交于點(diǎn)E,將正方形ABCD沿x軸負(fù)半軸方向平移a個(gè)單位長(zhǎng)度,使點(diǎn)D落在直線EF上.有下列結(jié)論:①△ABO的面積為3;②點(diǎn)C的坐標(biāo)是(4,1);③點(diǎn)E到x軸距離是;
④a=1.其中正確結(jié)論的個(gè)數(shù)是( )
A. 4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:點(diǎn)A、B在數(shù)軸上分別表示實(shí)數(shù)a、b,A,B兩點(diǎn)之間的距離表示為│AB│.當(dāng)A、B兩點(diǎn)中有一點(diǎn)在原點(diǎn)時(shí),不妨設(shè)點(diǎn)A在原點(diǎn),如圖1,|AB|=|OB|=|b|=|ab|;
當(dāng)A、B兩點(diǎn)都不在原點(diǎn)時(shí),
①如圖2,點(diǎn)A、B都在原點(diǎn)的右邊,|AB|=|OB||OA|=|b||a|=ba=|ab|;
②如圖3,點(diǎn)A、B都在原點(diǎn)的左邊,|AB|=|OB||OA|=|b||a|=b(a)=ab=│a-b│;
③如圖4,點(diǎn)A、B在原點(diǎn)的兩邊,|AB|=|OB|+|OA|=|b|+|a|=-b+a=|ab|;綜上,數(shù)軸上A、B兩點(diǎn)之間的距離|AB|=|ab|.
(1)回答下列問題:
①數(shù)軸上表示3和9的兩點(diǎn)之間的距離是______,數(shù)軸上表示5和9的兩點(diǎn)之間的距離是______,數(shù)軸上表示10和3的兩點(diǎn)之間的距離是______;
②數(shù)軸上表示x和4的兩點(diǎn)A和B之間的距離為______,如果|AB|=6,那么x為______;
③當(dāng)代數(shù)式|x+2|+|x3|取最小值______時(shí),相應(yīng)的x的取值范圍是______.
(2)a、b在數(shù)軸上位置如圖所示,請(qǐng)化簡(jiǎn)式子│a+1│-│2b-2│-│a+b│
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),P為△ABC所在平面上一點(diǎn),且∠APB=∠BPC=∠CPA=120°,則點(diǎn)P叫做△ABC的費(fèi)馬點(diǎn).
(1)如果點(diǎn)P為銳角△ABC的費(fèi)馬點(diǎn),且∠ABC=60°.
①求證:△ABP∽△BCP;
②若PA=3,PC=4,則PB= .
(2)已知銳角△ABC,分別以AB、AC為邊向外作正△ABE和正△ACD,CE和BD 相交于P點(diǎn).如圖(2)
①求∠CPD的度數(shù);
②求證:P點(diǎn)為△ABC的費(fèi)馬點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,山頂建有一座鐵塔,塔高BC=80米,測(cè)量人員在一個(gè)小山坡的P處測(cè)得塔的底部B點(diǎn)的仰角為45°,塔頂C點(diǎn)的仰角為60°.已測(cè)得小山坡的坡角為30°,坡長(zhǎng)MP=40米.求山的高度AB(精確到1米).(參考數(shù)據(jù): ≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖的數(shù)陣由88個(gè)偶數(shù)排成.現(xiàn)用一個(gè)如圖所示的平行四邊形框可以框出四個(gè)數(shù);
①圖中平行四邊形框內(nèi)的四個(gè)數(shù)有什么關(guān)系?
②在數(shù)陣中任意作一類似(1)中的平行四邊形框,設(shè)其中左上角的一個(gè)數(shù)是,那么其他三個(gè)數(shù)怎樣表示?
③在這個(gè)數(shù)陣的平行四邊形框內(nèi),是否存在和為288的四個(gè)數(shù)?若存在,求出這四個(gè)數(shù);不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】蝸牛從某點(diǎn)開始沿一東西方向直線爬行,規(guī)定向東爬行的路程記為正數(shù),向西爬行的路程記為負(fù)數(shù).爬過的各段路程依次為(單位:厘米):,,,,,,.
通過計(jì)算說明蝸牛是否回到起點(diǎn).
蝸牛離開出發(fā)點(diǎn)最遠(yuǎn)時(shí)是多少厘米?
在爬行過程中,如果每爬厘米獎(jiǎng)勵(lì)粒芝麻,則蝸牛一共得到多少粒芝麻?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com