將寬為2cm的長方形紙條折疊成如圖所示的形狀,那么折痕的長是( )
A.cm B.cm C.cm D.2cm
B
【解析】此題考查了折疊的性質(zhì)、等邊三角形的判定與性質(zhì)以及特殊角的三角函數(shù)問題
首先作QH⊥PA,垂足為H,則QH=2cm,易證得△APQ為等邊三角形,然后利用三角函數(shù)即可求得PQ的長.
如圖,作QH⊥PA,垂足為H,則QH=2cm,
由平行線的性質(zhì),得∠DPA=∠BAC=l0°,
由折疊的性質(zhì),得∠DPQ+∠APQ=180°,
即∠DPA+∠APQ+∠APQ=180°,60°+2∠APQ=180°,
∴∠APQ=60°,
又∵∠PAQ=∠BAC=60°,
∴△APQ為等邊三角形,
在Rt△PQH中,,
,
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013屆江蘇省鹽城市九年級(jí)下學(xué)期第一次月考數(shù)學(xué)試卷(帶解析) 題型:填空題
將寬為2cm的長方形紙條折疊成如圖形狀,則折痕的長是 cm(結(jié)果保留根號(hào)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com