(2008•孝感)已知關于x的一元二次方程x2+(2m-1)x+m2=0有兩個實數(shù)根x1和x2
(1)求實數(shù)m的取值范圍;
(2)當x12-x22=0時,求m的值.
【答案】分析:(1)若一元二次方程有兩實數(shù)根,則根的判別式△=b2-4ac≥0,建立關于m的不等式,求出m的取值范圍;
(2)由x12-x22=0得x1+x2=0或x1-x2=0;當x1+x2=0時,運用兩根關系可以得到-2m-1=0或方程有兩個相等的實根,據(jù)此即可求得m的值.
解答:解:(1)由題意有△=(2m-1)2-4m2≥0,
解得,
即實數(shù)m的取值范圍是

(2)由兩根關系,得根x1+x2=-(2m-1),x1•x2=m2,
由x12-x22=0得(x1+x2)(x1-x2)=0,
若x1+x2=0,即-(2m-1)=0,解得,

不合題意,舍去,
若x1-x2=0,即x1=x2
∴△=0,由(1)知
故當x12-x22=0時,
點評:本題考查了一元二次方程根的判別式及根與系數(shù)關系,利用兩根關系得出的結果必須滿足△≥0的條件.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《一元二次方程》(04)(解析版) 題型:解答題

(2008•孝感)已知關于x的一元二次方程x2+(2m-1)x+m2=0有兩個實數(shù)根x1和x2
(1)求實數(shù)m的取值范圍;
(2)當x12-x22=0時,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《一元二次方程》(04)(解析版) 題型:解答題

(2008•孝感)已知關于x的一元二次方程x2+(2m-1)x+m2=0有兩個實數(shù)根x1和x2
(1)求實數(shù)m的取值范圍;
(2)當x12-x22=0時,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年貴州省畢節(jié)地區(qū)中考數(shù)學試卷(樣卷)(解析版) 題型:解答題

(2008•孝感)已知關于x的一元二次方程x2+(2m-1)x+m2=0有兩個實數(shù)根x1和x2
(1)求實數(shù)m的取值范圍;
(2)當x12-x22=0時,求m的值.

查看答案和解析>>

同步練習冊答案