若x:y:z=2:3:4,則
2x+3y+4z
3x+2y+z
=
 
考點(diǎn):比例的性質(zhì)
專題:
分析:設(shè)x=2k,y=3k,z=4k(k≠0),把它們的值代入所求的代數(shù)式,然后進(jìn)行化簡.
解答:解:∵x:y:z=2:3:4,
∴設(shè)x=2k,y=3k,z=4k(k≠0),
2x+3y+4z
3x+2y+z
=
4k+9k+16k
6k+6k+4k
=
29
16

故答案是:
29
16
點(diǎn)評:本題主要考查了比例的性質(zhì),比較簡單.常用的解法是:設(shè)一個(gè)未知數(shù),把題目中的幾個(gè)量用所設(shè)的未知數(shù)表示出來,實(shí)現(xiàn)消元.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,OB、OC分別為定角∠AOD內(nèi)部的兩條動(dòng)射線
(1)當(dāng)OB、OC運(yùn)動(dòng)到如圖1的位置時(shí),∠AOC+∠BOD=100°,∠AOB+∠COD=40°,求∠AOD的度數(shù);
(2)在(1)的條件下(圖2),射線OM、ON分別為∠AOB、∠COD的平分線,當(dāng)∠COB繞著點(diǎn)O旋轉(zhuǎn)時(shí),下列結(jié)論:①∠AOM-∠DON的值不變;②∠MON的度數(shù)不變.可以證明,只有一個(gè)是正確的,請你作出正確的選擇并求值.
(3)在(1)的條件下(圖3),OE、OF是∠AOD外部的兩條射線,∠EOB=∠COF=90°,OP平分∠EOD,OQ平分∠AOF,當(dāng)∠BOC繞著點(diǎn)A旋轉(zhuǎn)時(shí),∠POQ的大小是否會(huì)發(fā)生變化?若不變,求出其度數(shù);若變化,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知1+a+a2+a3=0,求a+a2+a3+a4+…+a2012的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在分母小于15的最簡分?jǐn)?shù)中,求不等于
2
5
但與
2
5
最接近的那個(gè)分?jǐn)?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,P是矩形ABCD內(nèi)的任意一點(diǎn),連接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,設(shè)它們的面積分別是S1、S2、S3、S4,給出如下結(jié)論:
①S1+S4=S2+S3;
②S2+S4=S1+S3;
③若S3=2S1,則S4=2S2;
④若S1=S2,則P點(diǎn)在矩形的對角線上.
其中正確結(jié)論的序號是
 
(把所有正確結(jié)論的序號都填在橫線上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

3
x-1
有意義,則x的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

直線y=-2x+m+2和直線y=3x+m-3的交點(diǎn)坐標(biāo)互為相反數(shù),則m=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

自然數(shù)n的各位數(shù)字中,奇數(shù)數(shù)字的和記為S(n),偶數(shù)數(shù)字的和記為E(n),例如S(134)=1+3=4,E(134)=4,則S(1)+S(2)+…+S(100)=
 
,E(1)+E(2)+…+E(100)=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某蔬菜經(jīng)銷商到蔬菜種植基地采購一種蔬菜,經(jīng)銷商一次性采購蔬菜的采購單價(jià)y(元/千克)與采購量x(千克)之間的函數(shù)關(guān)系圖象如圖中折線AB--BC--CD所示(不包括端點(diǎn)A).
(1)當(dāng)100<x<200時(shí),直接寫y與x之間的函數(shù)關(guān)系式.
(2)蔬菜的種植成本為2元/千克,某經(jīng)銷商一次性采購蔬菜的采購量不超過200千克,當(dāng)采購量是多少時(shí),蔬菜種植基地獲利最大,最大利潤是多少元?

查看答案和解析>>

同步練習(xí)冊答案