數(shù)學(xué)公式=數(shù)學(xué)公式,且a、b、c、d均為正數(shù),則下列變形式中,錯誤的是


  1. A.
    數(shù)學(xué)公式=數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式=數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式=數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式=數(shù)學(xué)公式
D
分析:把各個選項依據(jù)比例的基本性質(zhì)和合比性質(zhì),即可判斷求解.
解答:A、變成等積式是:ad=bc,不符合題意;
B、變成等積式是:d(a+c)=c(b+d),即ad=bc,不符合題意;
C、變成等積式是:d(a+b)=b(c+d),即ad=bc,不符合題意;
D、變成等積式是:d(a+1)=b(c+1),即ad=bc+b-d,符合題意.
故選D.
點評:本題主要考查了判斷兩個比例式是否能夠互化的方法,即轉(zhuǎn)化為等積式,及比例的合比性質(zhì)判斷是否相同即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

4、在△ABC中,若∠C=90°且∠B-∠A=30°,則∠B=
60
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

9、下列說法:①若a≠0,m,n是任意整數(shù),則am.a(chǎn)n=am+n;②若a是有理數(shù),m,n是整數(shù),且mn>0,則(amn=amn;③若a≠b且ab≠0,則(a+b)0=1;④若a是自然數(shù),則a-3.a(chǎn)2=a-1.其中,正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,一副直角三角板滿足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°
操作:將三角板DEF的直角頂點E放置于三角板ABC的斜邊AC上,再將三角板DEF繞點E旋轉(zhuǎn),并使邊DE與邊AB交于點P,邊EF與邊BC于點Q.
探究一:在旋轉(zhuǎn)過程中,
(1)如圖2,當(dāng)
CE
EA
=1
時,EP與EQ滿足怎樣的數(shù)量關(guān)系?并給出證明;
(2)如圖3,當(dāng)
CE
EA
=2
時,EP與EQ滿足怎樣的數(shù)量關(guān)系?并說明理由;
(3)根據(jù)你對(1)、(2)的探究結(jié)果,試寫出當(dāng)
CE
EA
=m
時,EP與EQ滿足的數(shù)量關(guān)系式為
 
,其中m的取值范圍是
 
.(直接寫出結(jié)論,不必證明)
探究二:若
CE
EA
=2
且AC=30cm,連接PQ,設(shè)△EPQ的面積為S(cm2),在旋轉(zhuǎn)過程中:
(1)S是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,說明理由.
(2)隨著S取不同的值,對應(yīng)△EPQ的個數(shù)有哪些變化,求出相應(yīng)S的值或取值范圍.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,若sinA=
1
2
且∠B=90°-∠A,則sinB等于( 。
A、
1
2
B、
2
2
C、
3
2
D、1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•長寧區(qū)一模)已知△ABC中,AB=6,AC=9,D、E分別是直線AC和AB上的點,若
AD
AC
=
AE
AB
且AD=3,則BE=
4或8
4或8

查看答案和解析>>

同步練習(xí)冊答案