【題目】如圖,反比例函數y=(x>0)的圖象與直線y=x交于點M,∠AMB=90°,其兩邊分別與兩坐標軸的正半軸交于點A,B,四邊形OAMB的面積為6.
(1)求k的值;
(2)點P在反比例函數y=(x>0)的圖象上,若點P的橫坐標為3,∠EPF=90°,其兩邊分別與x軸的正半軸,直線y=x交于點E,F,問是否存在點E,使得PE=PF?若存在,求出點E的坐標;若不存在,請說明理由.
【答案】(1)6;(2)E(4,0)或E(6,0).
【解析】試題分析:(1)過點M作MC⊥x軸于點C,MD⊥y軸于點D,根據AAS證明△AMC≌△BMD,那么S四邊形OCMD=S四邊形OAMB=6,根據反比例函數比例系數k的幾何意義得出k=6;
(2)先根據反比例函數圖象上點的坐標特征求得點P的坐標為(3,2).再分兩種情況進行討論:①如圖2,過點P作PG⊥x軸于點G,過點F作FH⊥PG于點H,交y軸于點K.根據AAS證明△PGE≌△FHP,進而求出E點坐標;②如圖3,同理求出E點坐標.
試題解析:(1)如圖1,過點M作MC⊥x軸于點C,MD⊥y軸于點D,
則∠MCA=∠MDB=90°,∠AMC=∠BMD,MC=MD,
∴△AMC≌△BMD,
∴S四邊形OCMD=S四邊形OAMB=6,
∴k=6;
(2)存在點E,使得PE=PF.
由題意,得點P的坐標為(3,2).
①如圖2,過點P作PG⊥x軸于點G,過點F作FH⊥PG于點H,交y軸于點K.
∵∠PGE=∠FHP=90°,∠EPG=∠PFH,PE=PF,
∴△PGE≌△FHP,
∴PG=FH=2,FK=OK=3-2=1,GE=HP=2-1=1,
∴OE=OG+GE=3+1=4,
∴E(4,0);
②如圖3,過點P作PG⊥x軸于點G,過點F作FH⊥PG于點H,交y軸于點K.
∵∠PGE=∠FHP=90°,∠EPG=∠PFH,PE=PF,
∴△PGE≌△FHP,
∴PG=FH=2,FK=OK=3+2=5,GE=HP=5-2=3,
∴OE=OG+GE=3+3=6,
∴E(6,0).
科目:初中數學 來源: 題型:
【題目】下列調查中,最適合采用抽樣調查的是( )
A. 對旅客上飛機前的安檢 B. 了解全班同學每周體育鍛煉的時間
C. 選出某校短跑最快的學生參加全市比賽 D. 了解某批次燈泡的使用壽命情況
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知a2+2ab=-8,b2+2ab=14,則a2+4ab+b2=( );a2-b2=( )
A. 22、-6 B. -22、6 C. 6、-22 D. -6、22
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com