如果方程(x-1)(x2-2x+m)=0的三根可以作為一個(gè)三角形的三邊之長(zhǎng),那么實(shí)數(shù)m的取值范圍是(    )

  A.0≤m≤1        B.m≥        C.        D.≤m≤1

 

【答案】

C

【解析】∵方程(x-1)(x2-2x+m)=0的有三根,

∴x1=1,x2-2x+m=0有根,方程x2-2x+m=0的△=4-4m≥0,得m≤1.

又∵原方程有三根,且為三角形的三邊和長(zhǎng).

∴有x2+x3>x1=1,|x2-x3|<x1=1,而x2+x3=2>1已成立;

當(dāng)|x2-x3|<1時(shí),兩邊平方得:(x2+x32-4x2x3<1.

即:4-4m<1.解得,m>.∴<m≤1.故選C.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的方程a2x2+(2a-1)x+1=0有兩個(gè)不相等的實(shí)數(shù)根x1,x2.(1)求a的取值范圍;(2)是否存在實(shí)數(shù)a,使方程的兩個(gè)實(shí)數(shù)根互為相反數(shù)如果存在,求出a的值;如果不存在,說(shuō)明理由.
解:(1)根據(jù)題意,得△=(2a-1)2-4a2>0,解得a<
1
4

∴當(dāng)a<
1
4
時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根.
(2)存在,如果方程的兩個(gè)實(shí)數(shù)根x1,x2互為相反數(shù),則x1+x2=-
2a-1
a
=0  ①,
解得a=
1
2
,經(jīng)檢驗(yàn),a=
1
2
是方程①的根.
∴當(dāng)a=
1
2
時(shí),方程的兩個(gè)實(shí)數(shù)根x1與x2互為相反數(shù).
上述解答過(guò)程是否有錯(cuò)誤?如果有,請(qǐng)指出錯(cuò)誤之處,并解答.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如果方程x2-(2m-1)x+m2=0有兩個(gè)實(shí)數(shù)根,那么m的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如果方程3x-4=0與方程3x+4k=12的解相同,則k=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如果方程x2-(m-1)x+
1
4
=0
有兩個(gè)相等的實(shí)數(shù)根,則m=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如果方程2x2a-1-3y3a+2b=10是一個(gè)二元一次方程,那么數(shù)a=
1
1
,b=
-1
-1

查看答案和解析>>

同步練習(xí)冊(cè)答案