7、若a,b,c為正數(shù),已知關于x的一元二次方程ax2+bx+c=0有兩個相等的實根,則方程(a+1)x2+(b+2)x+c+1=0的根的情況是( 。
分析:先根據(jù)關于x的一元二次方程ax2+bx+c=0有兩個相等的實根確定出△=b2-4ac=0,再求方程(a+1)x2+(b+2)x+c+1=0的根的判別式,并將△=b2-4ac=0代入其中進行化簡,然后根據(jù)它與0的大小來判斷該方程的根的情況.
解答:解:∵關于x的一元二次方程ax2+bx+c=0有兩個相等的實根,
∴△=b2-4ac=0,
則方程(a+1)x2+(b+2)x+c+1=0的根的判別式為:
△=(b+2)2-4(a+1)(c+1),
=b2+4b-4ac-4a-4c=b2-4ac+4(b-a-c)
=4(b-a-c)
∵4(b-a-c)的大小沒法確定,
∴△=(b+2)2-4(a+1)(c+1)的符號沒法確定,
∴方程(a+1)x2+(b+2)x+c+1=0的根的情況無法確定;
故選D.
點評:本題考查了一元二次方程的根的判別式.一元二次方程根的情況與判別式△的關系:
(1)△>0?方程有兩個不相等的實數(shù)根;
(2)△=0?方程有兩個相等的實數(shù)根;
(3)△<0?方程沒有實數(shù)根.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

19、按下面的程序計算,若開始輸入的值x為正數(shù),最后輸出的結果為656,則滿足條件的x的不同值最多有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

按下面的程序計算,若開始輸入的值x為正數(shù),最后輸出的結果為1339,則滿足條件的x的不同值最多有( 。精英家教網(wǎng)
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若分式
x-1
3x2
的值為正數(shù),則( 。
A、x>0B、x<0
C、x>1D、x<1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若分式
1
3-2x
的值為正數(shù),則x的取值應是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若兩個有理數(shù)之積為正數(shù),兩數(shù)之和為負數(shù),則兩個數(shù)( 。

查看答案和解析>>

同步練習冊答案