【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且 =0. (Ⅰ)求角B的大。
(Ⅱ)若b= ,a+c=4,求△ABC的面積.

【答案】解:(I)由 知:(2a+c)cosB+bcosC=0 由正弦定理知:(2sinA+sinC)cosB+sinBcosC=0
即2sinAcosB+sinCcosB+sinBcosC=0,
∴2sinAcosB=﹣sin(B+C)
,
又 B∈(0,π),

(II)在△ABC中由余弦定理知:b2=a2+c2﹣2accosB,
∴b2=(a+c)2﹣2ac﹣2accosB,
,
∴13=16﹣2ac+ac,
∴ac=3

【解析】(Ⅰ)由正弦定理和兩角和的正弦公式和誘導公式可得cosB=﹣ ,問題得以解決,(Ⅱ)由余弦定理可得ac=3,再根據(jù)三角形的面積公式計算即可.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,已知A(2,2)、B(4,0).若在坐標軸上取點C,使△ABC為等腰三角形,則滿足條件的點C的個數(shù)是(
A.5
B.6
C.7
D.8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=1+2cosxcos(x+3φ)是偶函數(shù),其中φ∈(0, ),則下列關(guān)于函數(shù)g(x)=cos(2x﹣φ)的正確描述是(
A.g(x)在區(qū)間[﹣ ]上的最小值為﹣1.
B.g(x)的圖象可由函數(shù)f(x)向上平移2個單位,在向右平移 個單位得到.
C.g(x)的圖象可由函數(shù)f(x)的圖象先向左平移 個單位得到.
D.g(x)的圖象可由函數(shù)f(x)的圖象先向右平移 個單位得到.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD和側(cè)面BCC1B1都是矩形,E是CD的中點,D1E⊥CD,AB=2BC=2.
(1)求證:BC⊥D1E;
(2)若平面BCC1B1與平面BED1所成的銳二面角的大小為 ,求線段D1E的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《張邱建算經(jīng)》是中國古代數(shù)學史上的杰作,該書中有首古民謠記載了一數(shù)列問題:“南山一棵竹,竹尾風割斷,剩下三十節(jié),一節(jié)一個圈.頭節(jié)高五寸 , 頭圈一尺三 . 逐節(jié)多三分 , 逐圈少分三 . 一蟻往上爬,遇圈則繞圈.爬到竹子頂,行程是多遠?”(注釋:①第一節(jié)的高度為0.5尺;②第一圈的周長為1.3尺;③每節(jié)比其下面的一節(jié)多0.03尺;④每圈周長比其下面的一圈少0.013尺) 問:此民謠提出的問題的答案是(
A.72.705尺
B.61.395尺
C.61.905尺
D.73.995尺

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx﹣mx的圖象與直線y=﹣1相切. (Ⅰ)求m的值,并求f(x)的單調(diào)區(qū)間;
(Ⅱ)若g(x)=ax3 , 設h(x)=f(x)﹣g(x),討論函數(shù)h(x)的零點個數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若隨機變量X~N(2,32),且P(X≤1)=P(X≥a),則(x+a)2(ax﹣ 5展開式中x3項的系數(shù)是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,ABC是等邊三角形,在BC邊上取點D,在邊AC的延長線上取點E使DE=AD.

求證:BD=CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在多面體ABCDEF中,正三角形BCE所在平面與菱形ABCD所在的平面垂直,F(xiàn)D⊥平面ABCD,且
(1)判斷直線EF平面ABCD的位置關(guān)系,并說明理由;
(2)若∠CBA=60°,求二面角A﹣FB﹣E的余弦值.

查看答案和解析>>

同步練習冊答案