【題目】如圖所示的拋物線對(duì)稱軸是直線x=1,與x軸有兩個(gè)交點(diǎn),與y軸交點(diǎn)坐標(biāo)是(0,3),把它向下平移2個(gè)單位后,得到新的拋物線解析式是 y=ax2+bx+c,以下四個(gè)結(jié)論:
①b2﹣4ac<0,②abc<0,③4a+2b+c=1,④a﹣b+c>10中,判斷正確的有(

A.②③④
B.①②③
C.②③
D.①④

【答案】A
【解析】解:根據(jù)題意平移后的拋物線的對(duì)稱軸x=﹣ =1,c=3﹣2=1,
由圖象可知,平移后的拋物線與x軸有兩個(gè)交點(diǎn),
∴b2﹣4ac>0,故①錯(cuò)誤;
∵拋物線開(kāi)口向上,∴a>0,b=﹣2a<0,
∴abc<0,故②正確;
∵平移后拋物線與y軸的交點(diǎn)為(0,1)對(duì)稱軸x=1,
∴點(diǎn)(2,1)點(diǎn)(0,1)的對(duì)稱點(diǎn),
∴當(dāng)x=2時(shí),y=1,
∴4a+2b+c=1,故③正確;
由圖象可知,當(dāng)x=﹣1時(shí),y>0,
∴a﹣b+c>0,故④正確.
故選A.
【考點(diǎn)精析】本題主要考查了二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系和二次函數(shù)圖象的平移的相關(guān)知識(shí)點(diǎn),需要掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開(kāi)口方向:a>0時(shí),拋物線開(kāi)口向上; a<0時(shí),拋物線開(kāi)口向下b與對(duì)稱軸有關(guān):對(duì)稱軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c);平移步驟:(1)配方 y=a(x-h)2+k,確定頂點(diǎn)(h,k)(2)對(duì)x軸左加右減;對(duì)y軸上加下減才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法不正確的是( )
A.選舉中,人們通常最關(guān)心的數(shù)據(jù)是眾數(shù)
B.從1、2、3、4、5中隨機(jī)取一個(gè)數(shù),取得奇數(shù)的可能性比較大
C.數(shù)據(jù)3、5、4、1、﹣2的中位數(shù)是3
D.某游藝活動(dòng)的中獎(jiǎng)率是60%,說(shuō)明參加該活動(dòng)10次就有6次會(huì)獲獎(jiǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線 (m<0)的頂點(diǎn)為A,交y軸于點(diǎn)C.

(1)求出點(diǎn)A的坐標(biāo)(用含m的式子表示);
(2)平移直線y=x經(jīng)過(guò)點(diǎn)A交拋物線C于另一點(diǎn)B,直線AB下方拋物線C上一點(diǎn)P,求點(diǎn)P到直線AB的最大距離
(3)設(shè)直線AC交x軸于點(diǎn)D,直線AC關(guān)于x軸對(duì)稱的直線交拋物線C于E、F兩點(diǎn).若∠ECF=90°,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)業(yè)觀光園計(jì)劃將一塊面積為900m2的園圃分成A,B,C三個(gè)區(qū)域,分別種植甲、乙、丙三種花卉,且每平方米栽種甲3株或乙6株或丙12株.已知B區(qū)域面積是A區(qū)域面積的2倍.設(shè)A區(qū)域面積為x(m2).
(1)求該園圃栽種的花卉總株數(shù)y關(guān)于x的函數(shù)表達(dá)式.
(2)若三種花卉共栽種6600株,則A,B,C三個(gè)區(qū)域的面積分別是多少?
(3)若三種花卉的單價(jià)(都是整數(shù))之和為45元,且差價(jià)均不超過(guò)10元,在(2)的前提下,全部栽種共需84000元.請(qǐng)寫出甲、乙、丙三種花卉中,種植面積最大的花卉總價(jià).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A,B,C,D在同一條直線上,點(diǎn)E,F(xiàn)分別在直線AD的兩側(cè),且AE=DF,∠A=∠D,AB=DC.

(1)求證:四邊形BFCE是平行四邊形;
(2)若AD=10,DC=3,∠EBD=60°,則BE=時(shí),四邊形BFCE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為美化校園,計(jì)劃對(duì)面積為1800m2的區(qū)域進(jìn)行綠化,安排甲、乙兩個(gè)工程隊(duì)完成.已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化的面積的2倍,并且在獨(dú)立完成面積為400m2區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用4天.
(1)求甲、乙兩工程隊(duì)每天能完成綠化的面積分別是多少m2?
(2)若學(xué)校每天需付給甲隊(duì)的綠化費(fèi)用為0.4萬(wàn)元,乙隊(duì)為0.25萬(wàn)元,要使這次的綠化總費(fèi)用不超過(guò)8萬(wàn)元,至少應(yīng)安排甲隊(duì)工作多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=4,將△ABC繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)30°后得到△A1BC1 , 則陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】按照有關(guān)規(guī)定:距高鐵軌道 200米以內(nèi)的區(qū)域內(nèi)不宜臨路新建學(xué)校、醫(yī)院、敬老院和集中住宅區(qū)等噪聲敏感建筑物.
如圖是一個(gè)小區(qū)平面示意圖,矩形ABEF為一新建小區(qū),直線MN為高鐵軌道,C、D是直線MN上的兩點(diǎn),點(diǎn)C、A、B在一直線上,且DA⊥CA,∠ACD=30°.小王看中了①號(hào)樓A單元的一套住宅,與售樓人員的對(duì)話如下:

(1)小王心中一算,發(fā)現(xiàn)售樓人員的話不可信,請(qǐng)你用所學(xué)的數(shù)學(xué)知識(shí)說(shuō)明理由;
(2)若一列長(zhǎng)度為228米的高鐵以252千米/小時(shí)的速度通過(guò)時(shí),則A單元用戶受到影響時(shí)間有多長(zhǎng)?
(溫馨提示: ≈1.4, ≈1.7, ≈6.1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(0,4),B(3,0),連接AB,將△AOB沿過(guò)點(diǎn)B的直線折疊,使點(diǎn)A落在x軸上的點(diǎn)A′處,折痕所在的直線交y軸正半軸于點(diǎn)C,則直線BC的解析式為

查看答案和解析>>

同步練習(xí)冊(cè)答案