(2011•陜西)如圖,在梯形ABCD中,AD∥BC,對(duì)角線AC⊥BD,若AD=3,BC=7,則梯形ABCD面積的最大值  
25
解:

過D作DE∥AC交BC的延長線于E,DH⊥BC于H,
∵DE∥AC,AD∥BC,
∴四邊形ADEC是平行四邊形,
∴AC=DE,AD=CE=3,∠BFC=∠BDE=90°,
∴BH=EH=(3+7)=5,
DH=5,
∴梯形的面積的最大值是(AD+BC)•DH=×10×5=25,
故答案為:25.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分4分)
(1)如圖①兩個(gè)正方形的邊長均為3,求三角形DBF的面積.
(2)如圖②,正方形ABCD的邊長為3,正方形CEFG的邊長為1, 求三角形DBF的面積.
(3)如圖③,正方形ABCD的邊長為a,正方形CEFG的邊長為,求三角形DBF的面積.

從上面計(jì)算中你能得到什么結(jié)論.
結(jié)論是:
(沒寫結(jié)論也不扣分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

(2011四川瀘州,15,3分)矩形ABCD的對(duì)角線相交于點(diǎn)O,AB=4cm,∠AOB=60°,則矩形的面積為       cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,E、F、G、H分別是BD、BC、AC、AD的中點(diǎn),且AB=CD.下列結(jié)論:

①EG⊥FH,②四邊形EFGH是矩形,③HF平分∠EHG,④EG=(BC-AD),⑤四邊形
EFGH是菱形.其中正確的個(gè)數(shù)是【   】
A.1          B.2          C.3          D.4  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:平行四邊形ABCD中,過對(duì)角線AC中點(diǎn)O的直線EF交AD于F,BC于E。
求證:BE=DF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

(2011•溫州)如圖,在矩形ABCD中,對(duì)角線AC,BD交與點(diǎn)O.已知∠AOB=60°,AC=16,則圖中長度為8的線段有( 。
A.2條B.4條
C.5條D.6條

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分11分)如圖,在梯形ABCD中,AD∥BC,BC=2AD,點(diǎn)F、G分別是邊BC、CD的中點(diǎn),連接AF、FG,過點(diǎn)D作DE∥FG交AF于點(diǎn)E。
(1)求證:△AED≌△CGF;
(2)若梯形ABCD為直角梯形,∠B=90°,判斷四邊形DEFG是什么特殊四邊形?并證明你的結(jié)論;
(3)若梯形ABCD的面積為a(平方單位),則四邊形DEFG的面積為      (平方單位)。(只寫結(jié)果,不必說理)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

(11·孝感)已知正方形ABCD,以CD為邊作等邊△CDE,則∠AED的度數(shù)是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2011廣西崇左,22,10分)(本小題滿分10分)矩形、菱形、正方形都是平行四邊形,但它們都是有特殊條件的平行四邊形,正方形不僅是特殊的矩形,也是特殊的菱形.因此,我們可利用矩形、菱形的性質(zhì)來研究正方形的有關(guān)問題.回答下列問題:
(1)將平行四邊形、矩形、菱形、正方形填入它們的包含關(guān)系的下圖中.

(2)要證明一個(gè)四邊形是正方形,可先證明四邊形是矩形,再證明這個(gè)矩形的_______相等;或者先證明四邊形是菱形,在證明這個(gè)菱形有一個(gè)角是________ .
(3)某同學(xué)根據(jù)菱形面積計(jì)算公式推導(dǎo)出對(duì)角線長為a的正方形面積是S=0.5a2,對(duì)此結(jié)論,你認(rèn)為是否正確?若正確,請(qǐng)說明理由;若不正確,請(qǐng)舉出一個(gè)反例說明.

查看答案和解析>>

同步練習(xí)冊(cè)答案