【題目】如圖,四邊形ABCD與四邊形AEFG都是菱形,其中點(diǎn)C在AF上,點(diǎn)E,G分別在BC,CD上,若∠BAD=135°,∠EAG=75°,則 =

【答案】
【解析】解:∵∠BAD=135°,∠EAG=75°,四邊形ABCD與四邊形AEFG都是菱形, ∴∠B=180°﹣∠BAD=45°,∠BAE=∠BAC﹣∠EAC=30°,
過點(diǎn)E作EM⊥AB于點(diǎn)M,設(shè)EM=x,
在Rt△AEM中,AE=2EM=2x,AM= x,
在Rt△BEM中,BM=x,
= =
所以答案是:

【考點(diǎn)精析】本題主要考查了等腰直角三角形和含30度角的直角三角形的相關(guān)知識點(diǎn),需要掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°;在直角三角形中,如果一個(gè)銳角等于30°,那么它所對的直角邊等于斜邊的一半才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,第1次平移將矩形ABCD沿AB的方向向右平移5個(gè)單位,得到矩形A1B1C1D1 , 第2次平移將矩形A1B1C1D1沿A1B1的方向向右平移5個(gè)單位,得到矩形A2B2C2D2…,第n次平移將矩形An1Bn1Cn1Dn1沿An1Bn1的方向平移5個(gè)單位,得到矩形AnBnCnDn(n>2).
(1)求AB1和AB2的長.
(2)若ABn的長為56,求n.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一塊三角板和半圓形量角器按圖中方式疊放,三角板一邊與量角器的零刻度線所在直線重合,重疊部分的量角器。 )對應(yīng)的圓心角(∠AOB)為120°,OC的長為2cm,則三角板和量角器重疊部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2013年5月7日浙江省11個(gè)城市的空氣質(zhì)量指數(shù)(AQI)如圖所示:
(1)這11個(gè)城市當(dāng)天的空氣質(zhì)量指數(shù)的極差、眾數(shù)和中位數(shù)分別是多少?
(2)當(dāng)0≤AQI≤50時(shí),空氣質(zhì)量為優(yōu).求這11個(gè)城市當(dāng)天的空氣質(zhì)量為優(yōu)的頻率;
(3)求寧波、嘉興、舟山、紹興、臺州五個(gè)城市當(dāng)天的空氣質(zhì)量指數(shù)的平均數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一點(diǎn)A從數(shù)軸上表示+2的點(diǎn)開始移動(dòng),第一次先向左移動(dòng)1個(gè)單位,再向右移動(dòng)2個(gè)單位;第二次先向左移動(dòng)3個(gè)單位,再向右移動(dòng)4個(gè)單位;第三次先向左移動(dòng)5個(gè)單位,再向右移動(dòng)6個(gè)單位……

(1)寫出第一次移動(dòng)后這個(gè)點(diǎn)在數(shù)軸上表示的數(shù)為

(2)寫出第二次移動(dòng)后這個(gè)點(diǎn)在數(shù)軸上表示的數(shù)為 ;

(3)寫出第五次移動(dòng)后這個(gè)點(diǎn)在數(shù)軸上表示的數(shù)為 ;

4寫出第次移動(dòng)結(jié)果這個(gè)點(diǎn)在數(shù)軸上表示的數(shù)為 ;

(5)如果第次移動(dòng)后這個(gè)點(diǎn)在數(shù)軸上表示的數(shù)為56,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】科學(xué)家為了推測最適合某種珍奇植物生長的溫度,將這種植物分別放在不同溫度的環(huán)境中,經(jīng)過一定時(shí)間后,測試出這種植物高度的增長情況,部分?jǐn)?shù)據(jù)如表:

溫度t/℃

﹣4

﹣2

0

1

4

植物高度增長量l/mm

41

49

49

46

25

科學(xué)家經(jīng)過猜想、推測出l與t之間是二次函數(shù)關(guān)系.由此可以推測最適合這種植物生長的溫度為℃.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y= x2+bx與直線y=2x交于點(diǎn)O(0,0),A(a,12).點(diǎn)B是拋物線上O,A之間的一個(gè)動(dòng)點(diǎn),過點(diǎn)B分別作x軸、y軸的平行線與直線OA交于點(diǎn)C,E.

(1)求拋物線的函數(shù)解析式;
(2)若點(diǎn)C為OA的中點(diǎn),求BC的長;
(3)以BC,BE為邊構(gòu)造矩形BCDE,設(shè)點(diǎn)D的坐標(biāo)為(m,n),求出m,n之間的關(guān)系式.
(4)將射線OA繞原點(diǎn)旋轉(zhuǎn)45°并與拋物線交于點(diǎn)P,求出P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是一個(gè)長為2m,寬為2n的長方形,沿圖中虛線用剪刀均分成四個(gè)小長方形,然后按圖的方式拼成一個(gè)正方形.

(1)按要求填空:

你認(rèn)為圖中的陰影部分的正方形的邊長等于   

請用兩種不同的方法表示圖中陰影部分的面積:

方法1:   

方法2:   

觀察圖,請寫出代數(shù)式(m+n)2,(m﹣n)2,mn這三個(gè)代數(shù)式之間的等量關(guān)系:   ;

(2)根據(jù)(1)題中的等量關(guān)系,解決如下問題:若|m+n﹣6|+|mn﹣4|=0,求(m﹣n)2的值.

(3)實(shí)際上有許多代數(shù)恒等式可以用圖形的面積來表示,如圖,它表示了   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某公路(可視為)的同一側(cè)有A、B、C三個(gè)村莊,要在公路邊建一貨棧D,向A、B、C三個(gè)村莊送農(nóng)用物資,路線是D→A→B→C→DD→C→B→A→D.試問在公路邊是否存在一點(diǎn)D,使送貨路線之和最短?若存在,請?jiān)趫D中畫出點(diǎn)D所在的位置,簡要說明作法;若不存在,請說明你的理由.

查看答案和解析>>

同步練習(xí)冊答案