如圖,在△ABC中,AB=AC,∠A=50°,點(diǎn)D、E、F分別在邊AB、BC和CA上,且BD=CE,BE=CF.求∠DEF的度數(shù).
分析:首先證明△DBE≌△ECF,進(jìn)而得到∠EFC=∠DEB,再根據(jù)三角形內(nèi)角和計(jì)算出∠CFE+∠FEC的度數(shù),進(jìn)而得到∠DEB+∠FEC的度數(shù),然后可算出∠DEF的度數(shù).
解答:解:∵AB=AC,
∴∠B=∠C,
在△DBE和△ECF中,
BD=EC
∠B=∠C
EB=CF
,
∴△DBE≌△ECF(SAS),
∴∠EFC=∠DEB,
∵∠A=50°,
∴∠C=(180°-50°)÷2=65°,
∴∠CFE+∠FEC=180°-65°=115°,
∴∠DEB+∠FEC=115°,
∴∠DEF=180°-115°=65°.
點(diǎn)評(píng):此題主要考查了全等三角形的性質(zhì)和判定,以及三角形內(nèi)角和定理,關(guān)鍵是掌握三角形內(nèi)角和為180°.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫(huà)出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫(huà)出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案