【題目】如圖,AB為⊙O的直徑,BC、AD是⊙O的切線,切點(diǎn)分別為B、A,過點(diǎn)O作EC⊥OD,EC交BC于點(diǎn)C,交AD于點(diǎn)E.
(1)求證:CE是⊙O的切線;
(2)若AE=1,AD=3,求陰影部分的面積.(結(jié)果保留π)

【答案】
(1)證明:作OH⊥CD,垂足為H,

∵BC、AD是⊙O的切線,

∴∠CBO=∠OAE=90°,

在△BOC和△AOE中, ,

∴△BOC≌△AOE,

∴OC=OE,

又∵EC⊥OD,

∴DE=DC,

∴∠ODC=∠ODE,

∴OH=OA,

∴CD是⊙O的切線


(2)∵∠E+∠AOE=90°,∠DOA+∠AOE=90°,

∴∠E=∠DOA,

又∵∠OAE=∠ODA=90°,

∴△AOE∽△ADO,

= ,

∴OA2=EAAD=1×3=3,

∵OA>0,∴OA= ,

∴tanE= = ,

∴∠DOA=∠E=60°,

∵DA=DH,∠OAD=∠OHD=90°,

∴∠DOH=∠DOA=60°,

∴S陰影部分= ×3× + ×3× =3 ﹣π.


【解析】(1)首先作OH⊥CD,垂足為H,由BC、AD是⊙O的切線,易證得△BOC≌△AOE(ASA),繼而可得OD是CE的垂直平分線,則可判定DC=DE,即可得OD平分∠CDE,則可得OH=OA,證得CD是⊙O的切線;(2)首先證得△AOE∽△ADO,然后由相似三角形的對應(yīng)邊成比例,求得OA的長,然后利用三角函數(shù)的性質(zhì),求得∠DOA的度數(shù),繼而求得答案.
【考點(diǎn)精析】通過靈活運(yùn)用垂徑定理和扇形面積計(jì)算公式,掌握垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2)即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2013年4月20日,四川雅安發(fā)生7.0級地震,給雅安人民的生命財(cái)產(chǎn)帶來巨大損失.某市民政部門將租用甲、乙兩種貨車共16輛,把糧食266噸、副食品169噸全部運(yùn)到災(zāi)區(qū).已知一輛甲種貨車同時(shí)可裝糧食18噸、副食品10噸;一輛乙種貨車同時(shí)可裝糧食16噸、副食11噸.
(1)若將這批貨物一次性運(yùn)到災(zāi)區(qū),有哪幾種租車方案?
(2)若甲種貨車每輛需付燃油費(fèi)1500元;乙種貨車每輛需付燃油費(fèi)1200元,應(yīng)選(1)中的哪種方案,才能使所付的費(fèi)用最少?最少費(fèi)用是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)P是線段AD上一動點(diǎn),OBD的中點(diǎn),PO的延長線交BC于點(diǎn)Q。

(1)求證:OP=OQ;

(2)若AD=8cm,AB=6cm,P從點(diǎn)A出發(fā),以1cm/秒的速度向點(diǎn)D運(yùn)動(不與點(diǎn)D重合),設(shè)點(diǎn)P運(yùn)動時(shí)間為t秒,請用t表示PD的長;并求當(dāng)t為何值時(shí),四邊形PBQD是菱形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B、C、D、E五位同學(xué)進(jìn)行一次乒乓球單打比賽,要從中選出兩位同學(xué)打第一場比賽.
(1)若已確定A打第一場,再從其余四位同學(xué)中隨機(jī)選取一位,求恰好選中B同學(xué)的概率;
(2)請用畫樹狀圖或列表法,求恰好選中A、B兩位同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)P(1,0).點(diǎn)P第1次向上跳動1個(gè)單位至點(diǎn)P1(1,1),緊接著第2次向左跳動2個(gè)單位至點(diǎn)P2(-1,1),第3次向上跳動1個(gè)單位至點(diǎn)P3,第4次向右跳動3個(gè)單位至點(diǎn)P4,第5次又向上跳動1個(gè)單位至點(diǎn)P5,第6次向左跳動4個(gè)單位至點(diǎn)P6,…….照此規(guī)律,點(diǎn)P第100次跳動至點(diǎn)P100的坐標(biāo)是( )

A. (-26,50) B. (-25,50) C. (26,50) D. (25,50)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10分)將一副三角尺如圖拼接:含30°角的三角尺(△ABC)的長直角邊與含45°角的三角尺(△ACD)的斜邊恰好重合.已知AB=2PAC上的一個(gè)動點(diǎn).

(1)當(dāng)點(diǎn)P運(yùn)動到∠ABC的平分線上時(shí),連接DP,求DP的長;

(2)當(dāng)點(diǎn)P在運(yùn)動過程中出現(xiàn)PDBC時(shí),求此時(shí)∠PDA的度數(shù);

(3)當(dāng)點(diǎn)P運(yùn)動到什么位置時(shí),以D,PB,Q為頂點(diǎn)的平行四邊形的頂點(diǎn)Q恰好在邊BC上?求出此時(shí)□DPBQ的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果100個(gè)乒乓球中有20個(gè)紅色的,那么在隨機(jī)抽出的20個(gè)乒乓球中(
A.剛好有4個(gè)紅球
B.紅球的數(shù)目多于4個(gè)
C.紅球的數(shù)目少于4個(gè)
D.以上都有可能

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB=3,將ABD沿對角線BD對折,得到EBD,DEBC交于點(diǎn) FADB=30°,則EF=---------------------------------------------( )

A. 3 B. 2 C. 3 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A=3a2b2ab2+abc,小明同學(xué)錯(cuò)將“2A﹣B“看成”2A+B“,算得結(jié)果為4a2b3ab2+4abc

(1)計(jì)算B的表達(dá)式;

(2)求出2AB的結(jié)果;

(3)小強(qiáng)同學(xué)說(2)中的結(jié)果的大小與c的取值無關(guān),對嗎?若a=,b=

(2)中式子的值.

查看答案和解析>>

同步練習(xí)冊答案