將圖中的硬紙片沿虛線折疊,可以圍成長(zhǎng)方體的是(  )
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)
分析:由平面圖形的折疊及展開(kāi)圖解題.
解答:解:A、可以折疊成,故選項(xiàng)正確;
B、缺少一個(gè)面,不能折疊成,故選項(xiàng)錯(cuò)誤;
C、缺少一個(gè)面,不能折疊成,故選項(xiàng)錯(cuò)誤;
D、是三棱柱,故選項(xiàng)錯(cuò)誤.
故選:A.
點(diǎn)評(píng):此題考查了展開(kāi)圖折疊成長(zhǎng)方體,通過(guò)結(jié)合立體圖形與平面圖形的相互轉(zhuǎn)化,去理解和掌握幾何體的展開(kāi)圖,要注意多從實(shí)物出發(fā),然后再?gòu)慕o定的圖形中辨認(rèn)它們能否折疊成給定的立體圖形..
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•河?xùn)|區(qū)一模)請(qǐng)你設(shè)計(jì)一個(gè)包裝盒,如圖所示,ABCD是邊長(zhǎng)為60cm的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使得ABCD四個(gè)點(diǎn)重合于圖中的點(diǎn)P,正好形成一個(gè)長(zhǎng)方體形狀的包裝盒,E、F在AB上是被切去的等腰直角三角形斜邊的兩個(gè)端點(diǎn).若廣告商要求包裝盒側(cè)面積Scm2最大,試求x應(yīng)取何值?
設(shè)AE=FB=xcm,包裝盒側(cè)面積為Scm2

(I)分析:由正方形硬紙片ABCD的邊長(zhǎng)為60cm,AE=FB=xcm,則EF=
(60-2x)
(60-2x)
cm.
為更好地尋找題目中的等量關(guān)系,將剪掉的陰影部分三角形集中,得到邊長(zhǎng)為EF的正方形,其面積為
(60-2x)2
(60-2x)2
cm2;折起的四個(gè)角上的四個(gè)等腰直角三角形的面積之和為
4x2
4x2
cm2
(Ⅱ)由以上分析,用含x的代數(shù)式表示包裝盒的側(cè)面積S,并求出問(wèn)題的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

請(qǐng)你設(shè)計(jì)一個(gè)包裝盒,如圖所示,ABCD是邊長(zhǎng)為60cm的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使得ABCD四個(gè)點(diǎn)重合于圖中的點(diǎn)P,正好形成一個(gè)長(zhǎng)方體形狀的包裝盒,E、F在AB上是被切去的等腰直角三角形斜邊的兩個(gè)端點(diǎn).若廣告商要求包裝盒側(cè)面積Scm2最大,試求x應(yīng)取何值?
設(shè)AE=FB=xcm,包裝盒側(cè)面積為Scm2

(I)分析:由正方形硬紙片ABCD的邊長(zhǎng)為60cm,AE=FB=xcm,則EF=________cm.
為更好地尋找題目中的等量關(guān)系,將剪掉的陰影部分三角形集中,得到邊長(zhǎng)為EF的正方形,其面積為_(kāi)_______cm2;折起的四個(gè)角上的四個(gè)等腰直角三角形的面積之和為_(kāi)_______cm2
(Ⅱ)由以上分析,用含x的代數(shù)式表示包裝盒的側(cè)面積S,并求出問(wèn)題的解.

查看答案和解析>>

同步練習(xí)冊(cè)答案