【題目】如圖,ABC ,AB=AC, E CA 的延長線上,E=AFE,請判 EF BC 的位置關(guān)系,并說明理由.

【答案】EF⊥BC,理由見解析.

【解析】

根據(jù)等腰三角形三線合一的性質(zhì)可得到∠BAD=∠CAD,再根據(jù)三角形外角的性質(zhì)可推出∠EFA=∠BAD,再根據(jù)內(nèi)錯角相等兩直線平行得到EF∥AD,已知AD⊥BC,則EFBC的關(guān)系為垂直.

:EF⊥BC.理由如下:

過點 A AD⊥BC 于點 D,延長 EF BC 于點 G.

∵AB=AC,AD⊥BC,

∴∠BAC=2∠CAD.

∵∠BAC=∠E+∠AFE,∠E=∠AFE,

∴∠BAC=2∠E.

∴∠CAD=∠E.∴AD∥EF.

∵∠ADC=90°,

∴∠EGC=90°,

EF⊥BC.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在一次數(shù)學活動中,黑板上畫著如圖所示的圖形,活動前老師在準備的四張紙片上分別寫有如下四個等式中的一個等式: ①AB=DC;②∠ABE=∠DCE;③AE=DE;④∠A=∠D
小明同學閉上眼睛從四張紙片中隨機抽取一張,再從剩下的紙片中隨機抽取另一張.請結(jié)合圖形解答下列兩個問題:

(1)當抽得①和②時,用①,②作為條件能判定△BEC是等腰三角形嗎?說說你的理由;
(2)請你用樹狀圖或表格表示抽取兩張紙片上的等式所有可能出現(xiàn)的結(jié)果(用序號表示),并求以已經(jīng)抽取的兩張紙片上的等式為條件,使△BEC不能構(gòu)成等腰三角形的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中秋節(jié)期間某水庫養(yǎng)殖場為適應(yīng)市場需求,連續(xù)用20天時間,采用每天降低水位以減少捕撈成本的辦法.對水庫中某種鮮魚進行捕撈銷售,第x天(1≤x≤20且x為整數(shù))的捕撈與銷售的相關(guān)信息如下:

鮮魚銷售單價(元/kg)

20

單位捕撈成本(元/kg)

5﹣

捕撈量(kg)

950﹣10x

假定該養(yǎng)殖場每天捕撈和銷售的鮮魚沒有損失,且能在當天全部售出.
(1)求第x天的收入y(元)與x(天)之間的函數(shù)關(guān)系式?(當天收入=日銷售額﹣日捕撈成本)
(2)在第幾天y取得最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了促進學生多樣化發(fā)展,某校組織開展了社團活動,分別設(shè)置了體育類、藝術(shù)類、文學類及其它類社團(要求人人參與社團,每人只能選擇一項).為了解學生喜愛哪種社團活動,學校做了一次抽樣調(diào)查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,完成下列問題:
(1)此次共調(diào)查了多少人?
(2)求文學社團在扇形統(tǒng)計圖中所占圓心角的度數(shù)
(3)若該校有1500名學生,請估計喜歡體育類社團的學生有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,銳角△ABC內(nèi)接于⊙O,點D在⊙O外(與點C在AB同側(cè)),∠ABD=90°,下列結(jié)論:①sinC>sinD;②cosC>cosD;③tanC>tanD,正確的結(jié)論為(
A.①②
B.②③
C.①②③
D.①③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知函數(shù)y= (x>0)的圖象經(jīng)過點A、B,點B的坐標為(2,2).過點A作AC⊥x軸,垂足為C,過點B作BD⊥y軸,垂足為D,AC與BD交于點F.一次函數(shù)y=ax+b的圖象經(jīng)過點A、D,與x軸的負半軸交于點E
(1)若AC= OD,求a、b的值;
(2)若BC∥AE,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,AB=6,點E在邊AB上,且BE=2AE.將△ADE沿ED對折至△FDE,延長EF交邊BC于點G,連結(jié)DG,BF.下列結(jié)論:①△DCG≌△DFG;②BG=GC;③DG∥BF;④SBFG=3.其中正確的結(jié)論是(填寫序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y= x的圖象交于點A、B,點B的橫坐標是4.點P是第一象限內(nèi)反比例函數(shù)圖象上的動點,且在直線AB的上方.

(1)若點P的坐標是(1,4),直接寫出k的值和△PAB的面積;
(2)設(shè)直線PA、PB與x軸分別交于點M、N,求證:△PMN是等腰三角形;
(3)設(shè)點Q是反比例函數(shù)圖象上位于P、B之間的動點(與點P、B不重合),連接AQ、BQ,比較∠PAQ與∠PBQ的大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,AB=3,BC=5,以點B為圓心,以任意長為半徑作弧,分別交BA、BC于點P、Q,再分別以P、Q為圓心,以大于 PQ的長為半徑作弧,兩弧在∠ABC內(nèi)交于點M,連接BM并延長交AD于點E,則DE的長為

查看答案和解析>>

同步練習冊答案