已知:如圖AB∥CD,BE∥CF.試說(shuō)明:∠1=∠4.

根據(jù)平行線的性質(zhì)可得∠ABC=∠BCD,∠2=∠3,即可證得結(jié)論.

解析試題分析:∵AB∥CD
∴∠ABC=∠BCD
∵BE∥CF
∴∠2=∠3
∴∠ABC-∠2=∠BCD-∠3
∴∠1=∠4.
考點(diǎn):平行線的性質(zhì)
點(diǎn)評(píng):本題屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握平行線的性質(zhì),即可完成.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、已知,如圖AB=CD,BC=AD,∠B=23°,則∠D=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、完成下面的證明.
已知:如圖AB=CD,BE=CF,AF=DE.求證:△ABE≌△DCF.

證明:∵AF=DE(已知)
∴AF-EF=DE-EF(
等式性質(zhì)
)即AE=DF
在△ABE和△DCF中
∵AB=CD,BE=CF(
已知

AE=DF(
已證

∴△ABE≌△DCF(
SSS
).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖AB∥CD,∠1=∠A,∠2=∠C,B、E、D在一條直線上.
求∠AEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、填寫下列推理中的空格
已知:如圖AB∥CD,EC∥FB
求證:∠B+∠C=180°
證明:∵AB∥CD   (已知)
∴∠
BGC
+∠C=180°(兩直線平行,同旁內(nèi)角互補(bǔ))
EC∥FB
(已知)
∴∠B=∠BGC (
兩直線平行,內(nèi)錯(cuò)角相等

∴∠B+∠C=180°(
等量代換

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,如圖AB∥CD,∠1=∠2,EP⊥FP,則以下錯(cuò)誤的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案