(10分)如圖,四邊形ABCD是平行四邊形,ACBD交于點(diǎn)O,∠1=∠2.
(1)求證:四邊形ABCD是矩形;
(2)若∠BOC=120°,AB=4cm,求四邊形ABCD的面積.

 

(1)∵∠1 =∠2,∴BOCO    即2 BO=2CO  (1分)
∵四邊形ABCD是平行四邊形    
AOCO,BOOD                  (2分)
AC2CO,BD 2 BO   AC BD   (3分)
∵四邊形ABCD是平行四邊形   ∴四邊形ABCD是矩形    (4分)
(2)在△BOC中,∠BOC =120°, ∴ ∠1 =∠2 =(180°—120°)¸2 = 30°       (5分)
∴在RtABC中,AC=2AB=2´4=8(cm),
BC(cm)                        (6分)
∴四邊形ABCD的面積=    (7分)

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2007•臨夏州)[(1)-(3),10分]如圖,已知等邊△ABC和點(diǎn)P,設(shè)點(diǎn)P到△ABC三邊AB、AC、BC(或其延長(zhǎng)線)的距離分別為h1、h2、h3,△ABC的高為h.
在圖(1)中,點(diǎn)P是邊BC的中點(diǎn),此時(shí)h3=0,可得結(jié)論:h1+h2+h3=h.
在圖(2)--(5)中,點(diǎn)P分別在線段MC上、MC延長(zhǎng)線上、△ABC內(nèi)、△ABC外.
(1)請(qǐng)?zhí)骄浚簣D(2)--(5)中,h1、h2、h3、h之間的關(guān)系;(直接寫出結(jié)論)
(2)證明圖(2)所得結(jié)論;
(3)證明圖(4)所得結(jié)論.
(4)在圖(6)中,若四邊形RBCS是等腰梯形,∠B=∠C=60°,RS=n,BC=m,點(diǎn)P在梯形內(nèi),且點(diǎn)P到四邊BR、RS、SC、CB的距離分別是h1、h2、h3、h4,橋形的高為h,則h1、h2、h3、h4、h之間的關(guān)系為:
m(h1+h2+h3)-n(h1+h3-h4)=(m+n)h
m(h1+h2+h3)-n(h1+h3-h4)=(m+n)h
;圖(4)與圖(6)中的等式有何關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年甘肅省臨夏州中考數(shù)學(xué)試卷(解析版) 題型:解答題

[(1)-(3),10分]如圖,已知等邊△ABC和點(diǎn)P,設(shè)點(diǎn)P到△ABC三邊AB、AC、BC(或其延長(zhǎng)線)的距離分別為h1、h2、h3,△ABC的高為h.
在圖(1)中,點(diǎn)P是邊BC的中點(diǎn),此時(shí)h3=0,可得結(jié)論:h1+h2+h3=h.
在圖(2)--(5)中,點(diǎn)P分別在線段MC上、MC延長(zhǎng)線上、△ABC內(nèi)、△ABC外.
(1)請(qǐng)?zhí)骄浚簣D(2)--(5)中,h1、h2、h3、h之間的關(guān)系;(直接寫出結(jié)論)
(2)證明圖(2)所得結(jié)論;
(3)證明圖(4)所得結(jié)論.
(4)在圖(6)中,若四邊形RBCS是等腰梯形,∠B=∠C=60°,RS=n,BC=m,點(diǎn)P在梯形內(nèi),且點(diǎn)P到四邊BR、RS、SC、CB的距離分別是h1、h2、h3、h4,橋形的高為h,則h1、h2、h3、h4、h之間的關(guān)系為:______;圖(4)與圖(6)中的等式有何關(guān)系?

查看答案和解析>>

同步練習(xí)冊(cè)答案