D
分析:首先根據(jù)已知條件看能得到哪些等量條件,然后根據(jù)得出的條件來判斷各結(jié)論是否正確.
解答:∵△ABC、△DCE都是等腰Rt△,
∴AB=AC=
BC=
,CD=DE=
CE;
∠B=∠ACB=∠DEC=∠DCE=45°;
①∵∠ACB=∠DCE=45°,
∴∠ACB-∠ACE=∠DCE-∠ACE;
即∠ECB=∠DCA;故①正確;
②當B、E重合時,A、D重合,此時DE⊥AC;
當B、E不重合時,A、D也不重合,由于∠BAC、∠EDC都是直角,則∠AFE、∠DFC必為銳角;
故②不完全正確;
④∵
,∴
;
由①知∠ECB=∠DCA,∴△BEC∽△ADC;
∴∠DAC=∠B=45°;
∴∠DAC=∠BCA=45°,即AD∥BC,故④正確;
③由④知:∠DAC=45°,則∠EAD=135°;
∠BEC=∠EAC+∠ECA=90°+∠ECA;
∵∠ECA<45°,∴∠BEC<135°,即∠BEC<∠EAD;
因此△EAD與△BEC不相似,故③錯誤;
⑤△ABC的面積為定值,若梯形ABCD的面積最大,則△ACD的面積最大;
△ACD中,AD邊上的高為定值(即為1),若△ACD的面積最大,則AD的長最大;
由④的△BEC∽△ADC知:當AD最長時,BE也最長;
故梯形ABCD面積最大時,E、A重合,此時EC=AC=
,AD=1;
故S
梯形ABCD=
(1+2)×1=
,故⑤正確;
因此本題正確的結(jié)論是①④⑤,故選D.
點評:此題主要考查了等腰直角三角形的性質(zhì)、平行線的判定、相似三角形的判定和性質(zhì)、圖形面積的求法等知識,綜合性強,難度較大.