與圓的內(nèi)接正方形的一邊等長的弧的度數(shù)為________(保留根號和p);

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•婺城區(qū)一模)某學(xué)習(xí)小組在探索“各內(nèi)角都相等的圓內(nèi)接多邊形是否為正多邊形”時,有如下探討:

甲同學(xué):我發(fā)現(xiàn)這種多邊形不一定是正多邊形.如圓內(nèi)接矩形不一定是正方形.
乙同學(xué):我知道,邊數(shù)為3時,它是正三角形;我想,邊數(shù)為5時,它可能也是正五邊形…
丙同學(xué):我發(fā)現(xiàn)邊數(shù)為6時,它也不一定是正六邊形.如圖2,△ABC是正三角形,弧AD、弧BE、弧CF均相等,這樣構(gòu)造的六邊形ADBECF不是正六邊形.
(1)如圖1,若圓內(nèi)接五邊形ABCDE的各內(nèi)角均相等,則∠ABC=
108°
108°
,請簡要說明圓內(nèi)接五邊形ABCDE為正五邊形的理由.
(2)如圖2,請證明丙同學(xué)構(gòu)造的六邊形各內(nèi)角相等.
(3)根據(jù)以上探索過程,就問題“各內(nèi)角都相等的圓內(nèi)接多邊形是否為正多邊形”的結(jié)論與“邊數(shù)n(n≥3,n為整數(shù))”的關(guān)系,提出你的猜想(不需證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

平面直角坐標(biāo)系中,M(36,0),⊿OMN是等腰直角三角形,∠ONM=90°

(1) 直接寫出N的坐標(biāo);

(2) 正方形ABCD是⊿OMN的內(nèi)接正方形,求正方形邊長;

(3) 在(2)的情況下,點(diǎn)P為線段AB上一點(diǎn),以P為圓心,PB為半徑的圓交線段AD于點(diǎn)E.當(dāng)B,E,N在一條直線上時,求⊙P半徑;

(4) 在(3)的情況下,線段CD上取點(diǎn)F,使∠EBF=45°,連結(jié)EF,判斷直線EF與⊙P是否相切.若是,寫出推理過程;若不是,說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

平面直角坐標(biāo)系中,M(36,0),⊿OMN是等腰直角三角形,∠ONM=90°

(1) 直接寫出N的坐標(biāo);
(2) 正方形ABCD是⊿OMN的內(nèi)接正方形,求正方形邊長;
(3) 在(2)的情況下,點(diǎn)P為線段AB上一點(diǎn),以P為圓心,PB為半徑的圓交線段AD于點(diǎn)E.當(dāng)B,E,N在一條直線上時,求⊙P半徑;
(4) 在(3)的情況下,線段CD上取點(diǎn)F,使∠EBF=45°,連結(jié)EF,判斷直線EF與⊙P是否相切.若是,寫出推理過程;若不是,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆浙江省寧波市九年級中考適應(yīng)性考試(三)數(shù)學(xué)卷(帶解析) 題型:解答題

平面直角坐標(biāo)系中,M(36,0),⊿OMN是等腰直角三角形,∠ONM=90°

(1) 直接寫出N的坐標(biāo);
(2) 正方形ABCD是⊿OMN的內(nèi)接正方形,求正方形邊長;
(3) 在(2)的情況下,點(diǎn)P為線段AB上一點(diǎn),以P為圓心,PB為半徑的圓交線段AD于點(diǎn)E.當(dāng)B,E,N在一條直線上時,求⊙P半徑;
(4) 在(3)的情況下,線段CD上取點(diǎn)F,使∠EBF=45°,連結(jié)EF,判斷直線EF與⊙P是否相切.若是,寫出推理過程;若不是,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省寧波市九年級中考適應(yīng)性考試(三)數(shù)學(xué)卷(解析版) 題型:解答題

平面直角坐標(biāo)系中,M(36,0),⊿OMN是等腰直角三角形,∠ONM=90°

(1) 直接寫出N的坐標(biāo);

(2) 正方形ABCD是⊿OMN的內(nèi)接正方形,求正方形邊長;

(3) 在(2)的情況下,點(diǎn)P為線段AB上一點(diǎn),以P為圓心,PB為半徑的圓交線段AD于點(diǎn)E.當(dāng)B,E,N在一條直線上時,求⊙P半徑;

(4) 在(3)的情況下,線段CD上取點(diǎn)F,使∠EBF=45°,連結(jié)EF,判斷直線EF與⊙P是否相切.若是,寫出推理過程;若不是,說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案