如圖,矩形ABCD中,點P是線段AD上一動點,O為BD的中點, PO的延長線交BC于Q.
(1)求證:△ P O D ≌ △Q O B ;
(2)若AD=8厘米,AB=6厘米,P從點A出發(fā),以1厘米/秒的速度向D運動(不與D重合).設(shè)點P運動時間為t秒,請用t表示PD的長;并求t為何值時,四邊形P B Q D是菱形.
(1)證明:四邊形ABCD是矩形,
∴AD∥BC,
∴∠PDO=∠QBO,又OB=OD,∠POD=∠QOB,
∴△POD≌△QOB
(2)解法一: PD=8-t
∵四邊形ABCD是矩形,∴∠A=90°,
∵AD=8cm,AB=6cm,∴BD=10cm,∴OD=5cm.
當四邊形PBQD是菱形時, PQ⊥BD,∴∠POD=∠A,又∠ODP=∠ADB,
∴△ODP∽△ADB,
∴,即,
解得,即運動時間為秒時,四邊形PBQD是菱形.
解法二:PD=8-t
當四邊形PBQD是菱形時,PB=PD=(8-t)cm,
∵四邊形ABCD是矩形,∴∠A=90°,在RT△ABP中,AB=6cm,
∴, ∴,
解得,即運動時間為秒時,四邊形PBQD是菱形.
【解析】(1)本題需先根據(jù)四邊形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根據(jù)O為BD的中點得出△POD≌△QOB.
(2)本題需先根據(jù)已知條件得出∠A的度數(shù),再根據(jù)AD=8厘米,AB=6厘米,得出BD和OD的長,再根據(jù)四邊形PBQD是菱形時,證出△ODP∽△ADB,即可求出t的值,判斷出四邊形PBQD是菱形
科目:初中數(shù)學 來源: 題型:
A、a≥
| ||
B、a≥b | ||
C、a≥
| ||
D、a≥2b |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com