已知拋物線經(jīng)過點(diǎn)(1,0),(-5,0),且頂點(diǎn)縱坐標(biāo)為
92
,這個(gè)二次函數(shù)的解析式
 
分析:已知拋物線與x軸交于(1,0),(-5,0)兩點(diǎn),可求對(duì)稱軸,即頂點(diǎn)的橫坐標(biāo),已知頂點(diǎn)的縱坐標(biāo),設(shè)拋物線解析式的頂點(diǎn)式y(tǒng)=a(x+2)2+
9
2
,再將點(diǎn)(1,0)代入求a即可.
解答:解:∵點(diǎn)(1,0),(-5,0)是拋物線與x的兩交點(diǎn),
∴拋物線對(duì)稱軸為直線x=-2,
∴拋物線的頂點(diǎn)坐標(biāo)為(-2,
9
2
),
設(shè)拋物線的解析式為y=a(x+2)2+
9
2
,
將點(diǎn)(1,0)代入,得a(1+2)2+
9
2
=0,
解得a=-
1
2
,即y=-
1
2
(x+2)2+
9
2

∴所求二次函數(shù)解析式為y=-
1
2
x2-2x+
5
2
點(diǎn)評(píng):本題考查了拋物線頂點(diǎn)坐標(biāo)的確定方法.根據(jù)頂點(diǎn)坐標(biāo),設(shè)拋物線解析式的頂點(diǎn)式,能使求解析式簡(jiǎn)便.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線經(jīng)過點(diǎn)(1,5)和(3,5),則拋物線的對(duì)稱軸為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

13、已知拋物線經(jīng)過點(diǎn)A(-1,5),B(5,5),C(1,9),則該拋物線上縱坐標(biāo)為9的另一點(diǎn)的坐標(biāo)是
(3,9)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知拋物線經(jīng)過點(diǎn)A(1,0)、B(3,0)、C(0,3),以AB為直徑畫圓.
(1)求此拋物線的解析式;
(2)求該圓與拋物線交點(diǎn)(除A、B外)坐標(biāo);
(3)以AB的中點(diǎn)O′為圓心畫圓,該圓的半徑r與此拋物線的交點(diǎn)個(gè)數(shù)有何關(guān)系(直接寫出結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線經(jīng)過點(diǎn)A(-3,0),B(0,3),C(2,0)三點(diǎn).
(1)求此拋物線的解析式;
(2)如果點(diǎn)D(1,m)在這條拋物線上,求m的值的點(diǎn)D關(guān)于這條拋物線對(duì)稱軸的對(duì)稱點(diǎn)E的坐標(biāo),并求出tan∠ADE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xoy中,已知拋物線經(jīng)過點(diǎn)A(0,4),B(1,0),C(5,0),拋物線對(duì)稱軸l與x軸相交于點(diǎn)M.
(1)求拋物線的解析式和對(duì)稱軸;
(2)點(diǎn)P在拋物線上,且以A、O、M、P為頂點(diǎn)的四邊形四條邊的長(zhǎng)度為四個(gè)連續(xù)的正整數(shù),請(qǐng)你直接寫出點(diǎn)P的坐標(biāo);
(3)連接AC.探索:在直線AC下方的拋物線上是否存在一點(diǎn)N,使△NAC的面積最大?若存在,請(qǐng)你求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)你說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案