如圖,在直角坐標(biāo)平面內(nèi)有一點(diǎn)P(3,4),那么OP與x軸正半軸的夾角a的正弦值為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
C
分析:作PM⊥x軸于點(diǎn)M,構(gòu)造直角三角形,根據(jù)三角函數(shù)的定義求解.
解答:解:作PM⊥x軸于點(diǎn)M,根據(jù)勾股定理可得OP=5.
∴sinA==
故選C.
點(diǎn)評:本題用到的知識點(diǎn)為:一個(gè)角的正弦值等于它所在直角三角形的對邊與斜邊之比.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)平面xOy中,拋物線C1的頂點(diǎn)為A(-1,-4),且過點(diǎn)B(-3,0)
(1)寫出拋物線C1與x軸的另一個(gè)交點(diǎn)M的坐標(biāo);
(2)將拋物線C1向右平移2個(gè)單位得拋物線C2,求拋物線C2的解析式;
(3)寫出陰影部分的面積S.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)平面中,Rt△ABC的斜邊AB在x軸上,直角頂點(diǎn)C在y軸的負(fù)半軸上,cos∠ABC=
45
,點(diǎn)P在線段OC上,且PO、OC的長是方程x2-15x+36=0的兩根.
(1)求P點(diǎn)坐標(biāo);
(2)求AP的長;
(3)在x軸上是否存在點(diǎn)Q,使以A、Q、C、P為頂點(diǎn)的四邊形是梯形?若存在,請求出直線PQ的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)平面內(nèi),函數(shù)y=
m
x
(x>0,m是常熟)的圖象經(jīng)過A(1,4),B(a,b),其中a>1,過點(diǎn)A作x軸垂線,垂足為C,過點(diǎn)B作y軸垂線,垂足為D,連接AD,DC,CB
(Ⅰ)求函數(shù)y=
m
x
的解析式;
(Ⅱ)若△ABD的面積為4,求點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

完成下列各題:
(1)解方程組
2x+y=2;         ①
3x-2y=10.      ②

(2)如圖,在直角坐標(biāo)平面內(nèi),O為原點(diǎn),點(diǎn)A的坐標(biāo)為(10,0),點(diǎn)B在第一象限內(nèi),BO=5,sin∠BOA=
3
5
.求cos∠BAO的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)平面內(nèi)的△ABC中,點(diǎn)A的坐標(biāo)為(0,2),點(diǎn)C的坐標(biāo)為(5,5),要使以A、B、C、D為頂點(diǎn)的四邊形是平行四邊形,且點(diǎn)D坐標(biāo)在第一象限,那么點(diǎn)D的坐標(biāo)是
(2,5)或(8,5)
(2,5)或(8,5)

查看答案和解析>>

同步練習(xí)冊答案