已知直線y=-4x-4與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,直線y=x-b過點(diǎn)C,與x軸交于點(diǎn)B.
(1)求點(diǎn)A、B、C的坐標(biāo);
(2)動(dòng)點(diǎn)D從點(diǎn)A出發(fā),沿線段AB向終點(diǎn)B運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)E從點(diǎn)B出發(fā),沿線段BC向終點(diǎn)C運(yùn)動(dòng),速度均為每秒1個(gè)單位長度,運(yùn)動(dòng)時(shí)間為t秒,當(dāng)其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),他們都停止運(yùn)動(dòng).
①連接ED,設(shè)△BDE的面積為S,求S與t的函數(shù)關(guān)系式.
②在運(yùn)動(dòng)過程中,當(dāng)△BDE為等腰三角形時(shí),直接寫出t的值.
分析:(1)在直線y=-4x-4中,令y=0即可求得A的橫坐標(biāo),則A的坐標(biāo)可以求得,令x=0,即可求得C的縱坐標(biāo),則A、C的坐標(biāo)可以求得,把C的坐標(biāo)代入y=x-b的解析式,即可求得b的值,則B的坐標(biāo)可以求得;
(2)①作EF⊥x軸于點(diǎn)F,則AD=BE=x,△BEF是等腰直角三角形,利用t表示出BD,EF的長,利用三角形的面積公式即可求得函數(shù)的解析式;
②當(dāng)BD=BE時(shí),BD=5-t,則可以得到5-t=t,求得t的值;
當(dāng)BD=DE時(shí),△BEF是等腰直角三角形,則BE是斜邊,因而BE=
2
BD,則可以得到關(guān)于t的方程,求得t的值;
當(dāng)DE=BE時(shí),△BEF是等腰直角三角形,則BD是斜邊,因而BD=
2
BE,則可以得到關(guān)于t的方程,求得t的值.
解答:解:(1)在y=-4x-4中,令y=0
得:-4x-4=0,
解得:x=-1,則A的坐標(biāo)是(-1,0),
令x=0,解得:y=-4,則C的坐標(biāo)是(0,-4),
代入y=x-b得:-b=-4,解得:b=4,
則直線的解析式是:y=x-4,
令y=0,解得:x=4,則B的坐標(biāo)是(4,0).

(2)①作EF⊥x軸于點(diǎn)F.
∵A的坐標(biāo)是(-1,0),B的坐標(biāo)是(4,0),C的坐標(biāo)是(0,-4),
∴AB=5,OB=4,OC=4
則BD=5-t,△OBC是等腰直角三角形.
∵△BEF是等腰直角三角形,
∴EF=
2
2
BE=
2
2
t,
∴S=
1
2
BD•EF=
1
2
×
2
2
t(5-t),
即函數(shù)解析式是:S=
5
2
4
t-
2
4
t2

②當(dāng)BD=BE時(shí),BD=5-t,則可以得到5-t=t,解得:t=
5
2
;
當(dāng)BD=DE時(shí),△BEF是等腰直角三角形,則BE是斜邊,因而BE=
2
BD,則t=
2
(5-t)
解得:t=10-5
2
;
當(dāng)DE=BE時(shí),△BEF是等腰直角三角形,則BD是斜邊,因而BD=
2
BE,即5-t=
2
t,解得:t=5(
2
-1).
則t=
5
2
或10-5
2
或5(
2
-1).
點(diǎn)評:本題考查了一次函數(shù)與等腰直角三角形的性質(zhì)的綜合應(yīng)用,正確對等腰三角形進(jìn)行討論,在后邊的兩種情況下,認(rèn)識(shí)到△BEF是等腰直角三角形是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知直線y=4x+3與y軸交于點(diǎn)A,那么點(diǎn)A的坐標(biāo)是( 。
A、(0,-3)
B、(0,-
3
4
)
C、(0,
3
4
)
D、(0,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知直線y=4x+3.
(1)畫出它的圖象.
(2)驗(yàn)證下列各點(diǎn)是否在直線y=4x+3上.(1,7)(-1,-1)(
12
,5)(-2,-3).
(3)通過驗(yàn)證,你能得到什么結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知直線y=-4x-4與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,直線y=x-b過點(diǎn)C,與x軸交于點(diǎn)B.
(1)求點(diǎn)A、B、C的坐標(biāo);
(2)動(dòng)點(diǎn)D從點(diǎn)A出發(fā),沿線段AB向終點(diǎn)B運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)E從點(diǎn)B出發(fā),沿線段BC向終點(diǎn)C運(yùn)動(dòng),速度均為每秒1個(gè)單位長度,運(yùn)動(dòng)時(shí)間為t秒,當(dāng)其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),他們都停止運(yùn)動(dòng).
①連接ED,設(shè)△BDE的面積為S,求S與t的函數(shù)關(guān)系式.
②在運(yùn)動(dòng)過程中,當(dāng)△BDE為等腰三角形時(shí),直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年山西省晉中市太谷縣任村鄉(xiāng)二中中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

已知直線y=-4x-4與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,直線y=x-b過點(diǎn)C,與x軸交于點(diǎn)B.
(1)求點(diǎn)A、B、C的坐標(biāo);
(2)動(dòng)點(diǎn)D從點(diǎn)A出發(fā),沿線段AB向終點(diǎn)B運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)E從點(diǎn)B出發(fā),沿線段BC向終點(diǎn)C運(yùn)動(dòng),速度均為每秒1個(gè)單位長度,運(yùn)動(dòng)時(shí)間為t秒,當(dāng)其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),他們都停止運(yùn)動(dòng).
①連接ED,設(shè)△BDE的面積為S,求S與t的函數(shù)關(guān)系式.
②在運(yùn)動(dòng)過程中,當(dāng)△BDE為等腰三角形時(shí),直接寫出t的值.

查看答案和解析>>

同步練習(xí)冊答案