【答案】
分析:(1)找出△BPE與△CFP的對(duì)應(yīng)角,其中∠BPE+∠CPF=150°,∠CPF+∠CFP=150°,得出∠BPE=∠CFP,從而解決問(wèn)題;
(2)①小題同前可證,②小題可通過(guò)對(duì)應(yīng)邊成比例證明,③小題求出△BPE中BE上的高,求出△PEF中EF上的高,得出關(guān)系式.
解答:(1)證明:∵在△ABC中,∠BAC=120°,AB=AC,
∴∠B=∠C=30°.
∵∠B+∠BPE+∠BEP=180°,
∴∠BPE+∠BEP=150°,
又∠EPF=30°,且∠BPE+∠EPF+∠CPF=180°,
∴∠BPE+∠CPF=150°,
∴∠BEP=∠CPF,
∴△BPE∽△CFP(兩角對(duì)應(yīng)相等的兩個(gè)三角形相似).
(2)解:①△BPE∽△CFP;
②△BPE與△PFE相似.
下面證明結(jié)論:
同(1),可證△BPE∽△CFP,得
=
,而CP=BP,因此
.
又因?yàn)椤螮BP=∠EPF,所以△BPE∽△PFE(兩邊對(duì)應(yīng)成比例且?jiàn)A角相等的兩個(gè)三角形相似).
③由②得△BPE∽△PFE,所以∠BEP=∠PEF.
分別過(guò)點(diǎn)P作PM⊥BE,PN⊥EF,垂足分別為M、N,則PM=PN.
連AP,在Rt△ABP中,由∠B=30°,AB=8,可得AP=4.
所以PM=2
,所以PN=2
,
所以s=
PN×EF=
m.
點(diǎn)評(píng):這是一道操作探究題,它改變了多年來(lái)?yè)P(yáng)州市最后一道壓軸題以二次函數(shù)為主線的呈現(xiàn)方式.它以每位學(xué)生都有的30°三角板在圖形上的運(yùn)動(dòng)為背景,既考查了學(xué)生圖形旋轉(zhuǎn)變換的思想,靜中思動(dòng),動(dòng)中求靜的思維方法,又考查了學(xué)生動(dòng)手實(shí)踐、自主探究的能力.
問(wèn)題的設(shè)置以問(wèn)題串的形式呈現(xiàn),層層推進(jìn),第1問(wèn)入手容易,第2問(wèn)深入困難,有一定的區(qū)分度,使不同層次的學(xué)生有不同的收獲.
同時(shí)通過(guò)本題的解答,一使同學(xué)們領(lǐng)悟到學(xué)習(xí)數(shù)學(xué)的方法,二是提醒教師學(xué)生在平時(shí)的教學(xué)中要注意變式練習(xí).
本題的第1問(wèn)不難,用兩角相等即可證得相似,第2問(wèn)中的①由第1問(wèn)類比即得,②要用到①中對(duì)應(yīng)邊成比例代換后方可證得,③一般學(xué)生都能想到作高,卻想不到求這條高要用到角平分線、解直角三角形等知識(shí).
實(shí)際上三角板運(yùn)動(dòng)到特殊位置還有一些結(jié)論,感興趣的學(xué)生不妨繼續(xù)研究.
要關(guān)注幾何圖形在運(yùn)動(dòng)狀態(tài)下幾何關(guān)系的不變性哦!