【題目】如圖,剪兩張對邊平行的紙片隨意交叉疊放在一起,轉動其中一張,重合部分構成一個四邊形,則下列結論中不一定成立的是( )
A. ∠DAB+∠ABC=180° B. AB=BC
C. AB=CD,AD=BC D. ∠ABC=∠ADC,∠BAD=∠BCD
【答案】A
【解析】
首先可判斷重疊部分為平行四邊形,且兩條紙條寬度相同;再由平行四邊形的等積轉換可得鄰邊相等,則四邊形ABCD為菱形.所以根據菱形的性質進行判斷.
四邊形ABCD是用兩張等寬的紙條交叉重疊地放在一起而組成的圖形,
∴AB∥CD,AD∥BC,
∴四邊形ABCD是平行四邊形(對邊相互平行的四邊形是平行四邊形)
∴AB=CD,AD=BC,∠ABC=∠ADC,∠BAD=∠BCD,故C、D正確;
過點D分別作AB,BC邊上的高為AE,AF.則
AE=AF(兩紙條相同,紙條寬度相同);
∵平行四邊形ABCD中,S四邊形ABCD=S四邊形ABCD,即AB×AF=BC×AE,
∴AB=BC.故B正確;
∴平行四邊形ABCD為菱形(鄰邊相等的平行四邊形是菱形).
只有在四邊形ABCD是矩形時,∠DAB+∠DCB=180°,故A不正確.
故選:A
科目:初中數學 來源: 題型:
【題目】如圖,池塘邊有一塊長為18m,寬為10m的長方形土地,現在將其 余三面留出寬都是xm的小路,中間余下的長方形部分做菜地,用整式表示:
(1)菜地的長a= m,寬b= m;
(2)菜地面積S= m2;
(3)當x=0.5m時,菜地面積是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=kx+b(k<0)與反比例函數y= 的圖象相交于A、B兩點,一次函數的圖象與y軸相交于點C,已知點A(4,1)
(1)求反比例函數的解析式;
(2)連接OB(O是坐標原點),若△BOC的面積為3,求該一次函數的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了做好大課間活動,計劃用400元購買10件體育用品,備選體育用品及單價如下表(單位:元)
備選體育用品 | 籃球 | 排球 | 羽毛球拍 |
單價(元) | 50 | 40 | 25 |
(1)若400元全部用來購買籃球和羽毛球拍共10件,問籃球和羽毛球拍各購買多少件?
(2)若400元全部用來購買籃球、排球和羽毛球拍三種共10件,能實現嗎?(若能實現直接寫出一種答案即可,若不能請說明理由.)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是某市電視臺記者為了解市民獲取新聞的主要圖徑,通過抽樣調查繪制的一個條形統(tǒng)計圖.若該市約有230萬人,則可估計其中將報紙和手機上網作為獲取新聞的主要途徑的總人數大約為萬人.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC 中,∠BAC=90°,AB=AC,點D是BC上一動點,連接AD,過點A作AE⊥AD,并且始終保持AE=AD,連接CE.
(1)求證:△ABD ≌△ACE ;
(2)若AF平分∠DAE交BC于F,探究線段BD,DF,FC之間的數量關系,并證明;
(3)在(2)的條件下,若BD=3,CF=4,求AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,從左邊第一個格子開始向右數,在每個小格子中都填入一個整數,使得其中任意三個相鄰格子中所填整數之和都相等.
6 | a | b | x | -2 | 1 | … |
(1)可求得x=______,第2016個格子中的數為______;
(2)判斷:前m個格子中所填整數之和是否可能為2016?若能,求出m的值,若不可能,請說明理由;
(3)如果x,y為前3格子中的任意兩個數,那么所有的|x-y|的和可以通過計算|6-a|+|a-6|+|a-b|+|b-a|+|6-b|+|b-6|得到.若x,y為前20格子中的任意兩個數,則所有的|a-b|的和為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,已知△ABC的三個頂點的坐標分別為A(﹣2,3),B(﹣6,0),C(﹣1,0).
(1)請直接寫出點B關于點A對稱的點的坐標;
(2)將△ABC繞坐標原點O逆時針旋轉90°,畫出圖形,直接寫出點B的對應點的坐標;
(3)請直接寫出:以A、B、C為頂點的平行四邊形的第四個頂點D的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A、B的坐標分別為(8,0)、(0,2 ),C是AB的中點,過點C作y軸的垂線,垂足為D,動點P從點D出發(fā),沿DC向點C勻速運動,過點P作x軸的垂線,垂足為E,連接BP、EC.當BP所在直線與EC所在直線第一次垂直時,點P的坐標為
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com