已知:如圖,在平面直角坐標(biāo)系xOy中,直線AB分別與x、y軸交于點B、A,與反比例函數(shù)的圖象分別交于點C、D,CE⊥x軸于點E,tan∠ABO=,OB=4,OE=2.
(1)求該反比例函數(shù)的解析式;
(2)求直線AB的解析式.
(1)y=﹣ (2)y=﹣x+2
【解析】
試題分析:(1)根據(jù)已知條件求出c點坐標(biāo),用待定系數(shù)法求出反比例的函數(shù)解析式;
(2)根據(jù)已知條件求出A,B兩點的坐標(biāo),用待定系數(shù)法求出一次函數(shù)的解析式.
解:(1)∵OB=4,OE=2,
∴BE=2+4=6.
∵CE⊥x軸于點E.tan∠ABO=.
∴CE=3.(1分)
∴點C的坐標(biāo)為C(﹣2,3).(2分)
設(shè)反比例函數(shù)的解析式為y=,(m≠0)
將點C的坐標(biāo)代入,得3=.(3分)
∴m=﹣6.(4分)
∴該反比例函數(shù)的解析式為y=﹣.(5分)
(2)∵OB=4,∴B(4,0).(6分)
∵tan∠ABO=,∴OA=2,∴A(0,2).
設(shè)直線AB的解析式為y=kx+b(k≠0),
將點A、B的坐標(biāo)分別代入,得.(8分)
解得.(9分)
∴直線AB的解析式為y=﹣x+2.(10分).
考點:反比例函數(shù)與一次函數(shù)的交點問題.
點評:本題是一次函數(shù)與反比例函數(shù)的綜合題.主要考查待定系數(shù)法求函數(shù)解析式.求A、B、C點的坐標(biāo)需用正切定義或相似三角形的性質(zhì),起點稍高,部分學(xué)生感覺較難.
科目:初中數(shù)學(xué) 來源: 題型:
3 |
2 |
16 |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
1 | 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆重慶萬州區(qū)巖口復(fù)興學(xué)校九年級下第一次月考數(shù)學(xué)試卷(帶解析) 題型:解答題
已知:直角梯形AOBC在平面直角坐標(biāo)系中的位置如圖,若AC∥OB,OC平分∠AOB,CB⊥x軸于B,點A坐標(biāo)為(3 ,4). 點P從原點O開始以2個單位/秒速度沿x軸正向運動 ;同時,一條平行于x軸的直線從AC開始以1個單位/秒速度豎直向下運動 ,交OA于點D,交OC于點M,交BC于點E. 當(dāng)點P到達(dá)點B時,直線也隨即停止運動.
(1)求出點C的坐標(biāo);
(2)在這一運動過程中, 四邊形OPEM是什么四邊形?請說明理由。若
用y表示四邊形OPEM的面積 ,直接寫出y關(guān)于t的函數(shù)關(guān)系式及t的
范圍;并求出當(dāng)四邊形OPEM的面積y的最大值?
(3)在整個運動過程中,是否存在某個t值,使⊿MPB為等腰三角形?
若有,請求出所有滿足要求的t值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年浙江省湖州市中考數(shù)學(xué)模擬試卷(十一)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com