已知:如圖△ABC中,高AD和BE相交于點H,且HA=HC.
(1)求證:∠1=∠2;
(2)用直尺和圓規(guī)畫出經(jīng)過B、H、C三點的⊙O(不寫畫法);
(3)證明EC是⊙O的切線.

(1)證明:在△AHC中;
∵HA=HC,
∴∠1=∠2,
∵AD⊥BC,BE⊥AC,∠AHE=∠BHD,
∴∠3=∠2,
∴∠1=∠2;

(2)畫圖正確;

(3)證明:連接CO并延長交⊙O于F,連接FH,則∠F+∠FCH=90°;
由(1)知∠1=∠2,
∵∠F=∠2,
∴∠F=∠1,
∴∠1+∠FCH=90°,
∴EC⊥FC,
∴EC是⊙的切線.
分析:(1)根據(jù)題意HA=HC,由等腰三角形的性質(zhì)可得∠1=∠3,圓內(nèi)接四邊形的性質(zhì)可得∠3=∠2;聯(lián)立可得∠1=∠2;
(2)根據(jù)三角形外接圓的作法可得答案;
(3)連接CO并延長交⊙O于F,連接FH,根據(jù)角的關(guān)系,易得∠1+∠FCH=90°,即EC⊥FC,故可得EC是⊙的切線.
點評:本題考查切線的判定,角相等的證明及三角形外接圓的作法,要求學生掌握常見的解題方法,并能結(jié)合圖形選擇簡單的方法解題.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖△ABC中,AD為△ABC的角平分線,求證:AB•DC=AC•BD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1998•河北)已知:如圖△ABC中,∠A的平分線AD交BC于D,⊙O過點A,且與BC相切于D,與AB、AC分別相交于E、F,AD與EF相交于G.
(1)求證:AF•FC=GF•DC;
(2)已知AC=6cm,DC=2cm,求FC、GF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖△ABC中,∠ACB=90°,D是AC上任意一點,DE⊥AB于E,M,N分別是BD,CE的中點,求證:MN⊥CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知,如圖△ABC中,AB=AC,CD⊥AD于D,CD=
12
BC,D在△ABC外,求證:∠ACD=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知,如圖△ABC中,D、E、F分別是三角形三邊中點,△ABC的周長為30,面積為48,則△DEF的周長為
15
15
,面積為
12
12

查看答案和解析>>

同步練習冊答案