如圖,△ABC在方格紙中

(1)請在方格紙上建立平面直角坐標系,使A(2,3),C(6,2),并求出B點坐標;
(2)以原點O為位似中心,相似比為2,在第一象限內(nèi)將△ABC放大,畫出放大后的圖形△A′B′C′,并寫出A′、B′、C′的坐標。
B(2,1)
(2)⊿A′B′C′略。A′(4,6) B′(4,2) C′(12,4)
本題考查學(xué)生利用相似三角形的性質(zhì)畫圖形的能力。
解:(1)如圖所示,原點O,x軸、y軸,點B坐標為B(2,1);
(2)△A′B′C′即為所求作的三角形.A′(4,6), B′(4,2), C′(12,4)
點評:本題考查了利用位似變換作圖,坐標位置的確定,熟練掌握網(wǎng)格結(jié)構(gòu)以及平面直角坐標系的知識是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

將三角形紙片△ABC按如圖所示的方式折疊,使點B落在邊AC上,記為點B′,折痕為EF。已知ABAC=8,BC=10,若以點B′,F,C為頂點的三角形與△ABC相似,那么BF的長度是______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

知識背景:杭州留下有一處野生古楊梅群落,其野生楊梅是一種具特殊價值的綠色食品.在當(dāng)?shù)厥袌龀鍪蹠r,基地要求“楊梅”用雙層上蓋的長方體紙箱封裝(上蓋紙板面積剛好等于底面面積的2倍,如圖)

(1)實際運用:如果要求紙箱的高為0.5米,底面是黃金矩形(寬與長的比是黃金比,取黃金比為0.6),體積為0.3立方米.
①按方案1(如圖)做一個紙箱,需要矩形硬紙板的面積是多少平方米?
②小明認為,如果從節(jié)省材料的角度考慮,采用方案2(如圖)的菱形硬紙板做一個紙箱比方案1更優(yōu),你認為呢?請說明理由.
(2)拓展思維:城西一家水果商打算在基地購進一批“野生楊梅”,但他感覺(1)中的紙箱體積太大,搬運吃力,要求將紙箱的底面周長、底面面積和高都設(shè)計為原來的一半,你認為水果商的要求能辦到嗎?請利用函數(shù)圖象驗證.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,在Rt⊿ABC中,∠C=90°,AC=8,CB=6,在斜邊AB上取中點M,過M作MN⊥AB交AC于N,則NC=         

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,AB是半圓的直徑,點C是弧AB的中點,點E是弧AC的中點,連接EB,CA交于點F,則=( 。
A.B.C.1﹣D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

兩個相似三角形的一組對應(yīng)邊分別為5cm和3cm,如果他們的面積之和為136cm2,則較大三角形的面積是         ( ▲  )
A.36cm2B.85 cm2C.96 cm2D.100 cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分11分)已知直線軸分別交于點A和點B,點B的坐標為(0,6)

(1)求的值和點A的坐標;
(2)在矩形OACB中,點P是線段BC上的一動點,直線PD⊥AB于點D,與軸交于點E,設(shè)BP=,梯形PEAC的面積為
①求的函數(shù)關(guān)系式,并寫出的取值范圍;
②⊙Q是OAB的內(nèi)切圓,求當(dāng)PE與⊙Q相交的弦長為2.4時點P的坐標。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知Rt△ABC中,∠ABC=90°,以直角邊AB為直徑作⊙O,交斜邊AC于點D,連結(jié)BD。(12分)

(1)若AD=3,BD=4,求邊BC的長;
(2)取BC的中點E,連結(jié)DE,求證:ED與⊙O相切。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖, 量具ABC是用來測量試管口直徑的,AB的長為10cm,AC被分為60等份.如果試管口DE正好對著量具上20等份處(DE∥AB),那么試管口直徑DE是             。

查看答案和解析>>

同步練習(xí)冊答案