在Rt△ABC與Rt△中,∠C=∠=90°,∠A=∠,AB=,那么下列結(jié)論中正確的是

[  ]

A.AC=

B.BC=

C.AC=

D.∠A=∠

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖,在Rt△ABC與Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于點G,過點A作AE∥DB交CB的延長線于點E,過點B作BF∥CA交DA的延長線于點F,AE,BF相交于點H.
(1)圖中有若干對三角形是全等的,請你任選一對進行證明;(不添加任何輔助線)
(2)證明四邊形AHBG是菱形;
(3)若使四邊形AHBG是正方形,還需在Rt△ABC的邊長之間再添加一個什么條件?請你寫出這個條件.(不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在Rt△ABC中,∠C=90°,∠BAC=60°,AB=8.半徑為
3
的⊙M與射線BA相切精英家教網(wǎng),切點為N,且AN=3.將Rt△ABC繞A順時針旋轉(zhuǎn)120°后得到Rt△ADE,點B、C的對應(yīng)點分別是點D、E.
(1)畫出旋轉(zhuǎn)后的Rt△ADE;
(2)求出Rt△ADE的直角邊DE被⊙M截得的弦PQ的長度;
(3)判斷Rt△ADE的斜邊AD所在的直線與⊙M的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖,在Rt△ABC與Rt△DEF中,∠B=∠E=90°,AC=DF,AB=DE,∠A=50°,則∠DFE=
40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:RT△ABC與RT△DEF中,∠ACB=∠EDF=90°,∠DEF=45°,EF=8cm,AC=16cm,BC=12cm.現(xiàn)將RT△ABC和RT△DEF按圖1的方式擺放,使點C與點E重合,點B、C(E)、F在同一條直線上,并按如下方式運動.
運動一:如圖2,△ABC從圖1的位置出發(fā),以1cm/s的速度沿EF方向向右勻速運動,DE與AC相交于點Q,當(dāng)點Q與點D重合時暫停運動;
運動二:在運動一的基礎(chǔ)上,如圖3,RT△ABC繞著點C順時針旋轉(zhuǎn),CA與DF交于點Q,CB與DE交于點P,此時點Q在DF上勻速運動,速度為
2
cm/s
,當(dāng)QC⊥DF時暫停旋轉(zhuǎn);
運動三:在運動二的基礎(chǔ)上,如圖4,RT△ABC以1cm/s的速度沿EF向終點F勻速運動,直到點C與點F重合時為止.
設(shè)運動時間為t(s),中間的暫停不計時,
解答下列問題
(1)在RT△ABC從運動一到最后運動三結(jié)束時,整個過程共耗時
 
s;
(2)在整個運動過程中,設(shè)RT△ABC與RT△DEF的重疊部分的面積為S(cm2),求S與t之間的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍;
(3)在整個運動過程中,是否存在某一時刻,點Q正好在線段AB的中垂線上,若存在,求出此時t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠B=30°.P是AB上的動點(P異于A、B),過點P的直線截Rt△ABC,使截得的三角形與Rt△ABC相似,當(dāng)
BP
BA
=
1
2
3
4
3
4
1
2
3
4
3
4
時,截得的三角形面積為Rt△ABC面積的
1
4

查看答案和解析>>

同步練習(xí)冊答案