已知二次函數(shù)y=ax2+bx+3的圖象經(jīng)過(guò)(1,
21
4
),(2,
11
2
)兩點(diǎn),與x軸的兩個(gè)交點(diǎn)的右邊一個(gè)交點(diǎn)為點(diǎn)A,與y軸交于點(diǎn)B.
(1)求此二次函數(shù)的解析式并畫出這個(gè)二次函數(shù)的圖象;
(2)求線段AB的中垂線的函數(shù)解析式.
(1)∵二次函數(shù)y=ax2+bx+3的圖象經(jīng)過(guò)(1,
21
4
),(2,
11
2
)兩點(diǎn),
∴將兩點(diǎn)坐標(biāo)代入二次函數(shù)解析式,
得:
a+b+3=
21
4
4a+2b+3=
11
2
,
解得:
a=-1
b=
13
4
,
∴此二次函數(shù)的解析式為y=-x2+
13
4
x+3.
圖象如右所示:

(2)解方程-x2+
13
4
x+3=0,
即4x2-13x-12=0,
解得x1=4,x2=-
3
4

∵拋物線y=-x2+
13
4
x+3與x軸的兩個(gè)交點(diǎn)的右邊一個(gè)交點(diǎn)為點(diǎn)A,與y軸交于點(diǎn)B,
∴A點(diǎn)坐標(biāo)為(4,0),B點(diǎn)坐標(biāo)為(0,3).
連接AB,作線段AB的中垂線MN,交AB于M,交OA于N,連接BN,則點(diǎn)M為AB的中點(diǎn),其坐標(biāo)為(2,
3
2
).
設(shè)N點(diǎn)坐標(biāo)為(x,0),則ON=x,AN=BN=4-x,
在△OBN中,∵∠BON=90°,OB=3,ON=x,BN=4-x,
∴OB2+ON2=BN2,即32+x2=(4-x)2,
解得x=
7
8
,
∴N點(diǎn)坐標(biāo)為(
7
8
,0).
設(shè)直線MN的解析式為y=mx+n,
將M(2,
3
2
),N(
7
8
,0)代入,
2m+n=
3
2
7
8
m+n=0

解得
m=
4
3
n=-
7
6
,
∴直線MN的解析式為y=
4
3
x-
7
6

即線段AB的中垂線的函數(shù)解析式為y=
4
3
x-
7
6

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,拋物線y=mx2-2mx+n與x軸交于A、B兩點(diǎn),點(diǎn)A的坐標(biāo)為(-2,0).
(1)求B點(diǎn)坐標(biāo);
(2)直線y=
1
2
x+4m+n
經(jīng)過(guò)點(diǎn)B.
①求直線和拋物線的解析式;
②點(diǎn)P在拋物線上,過(guò)點(diǎn)P作y軸的垂線l,垂足為D(0,d).將拋物線在直線l上方的部分沿直線l翻折,圖象的其余部分保持不變,得到一個(gè)新圖象G.請(qǐng)結(jié)合圖象回答:當(dāng)圖象G與直線y=
1
2
x+4m+n
只有兩個(gè)公共點(diǎn)時(shí),d的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)M在第一象限,拋物線與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交與點(diǎn)C,O為坐標(biāo)原點(diǎn),如果△ABM是直角三角形,AB=2,OM=
5

(1)求點(diǎn)M的坐標(biāo);
(2)求拋物線y=ax2+bx+c的解析式;
(3)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使得△PAC為直角三角形?若存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y=-
1
4
x2+bx+c
與x軸交于A、B,與y軸交于點(diǎn)C,連結(jié)AC、BC,D是線段OB上一動(dòng)點(diǎn),以CD為一邊向右側(cè)作正方形CDEF,連結(jié)BF.若S△OBC=8,AC=BC
(1)求拋物線的解析式;
(2)求證:BF⊥AB;
(3)求∠FBE;
(4)當(dāng)D點(diǎn)沿x軸正方向移動(dòng)到點(diǎn)B時(shí),點(diǎn)E也隨著運(yùn)動(dòng),則點(diǎn)E所走過(guò)的路線長(zhǎng)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,以AB為直徑的⊙C交x軸于A,交y軸于B,滿足OA:OB=4:3,以O(shè)C為直徑作⊙D,設(shè)⊙D的半徑為2.
(1)求⊙C的圓心坐標(biāo);
(2)過(guò)C作⊙D的切線EF交x軸于E,交y軸于F,求直線EF的解析式;
(3)拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸過(guò)C點(diǎn),頂點(diǎn)在⊙C上,與y軸交點(diǎn)為B,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y=x2+bx+c與直線y=x+1有兩個(gè)交點(diǎn)A、B.
(1)當(dāng)AB的中點(diǎn)落在y軸時(shí),求c的取值范圍;
(2)當(dāng)AB=2
2
,求c的最小值,并寫出c取最小值時(shí)拋物線的解析式;
(3)設(shè)點(diǎn)P(t,T)在AB之間的一段拋物線上運(yùn)動(dòng),S(t)表示△PAB的面積.
①當(dāng)AB=2
2
,且拋物線與直線的一個(gè)交點(diǎn)在y軸時(shí),求S(t)的最大值,以及此時(shí)點(diǎn)P的坐標(biāo);
②當(dāng)AB=m(正常數(shù))時(shí),S(t)是否仍有最大值,若存在,求出S(t)的最大值以及此時(shí)點(diǎn)P的坐標(biāo)(t,T)滿足的關(guān)系,若不存在說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線的圖象如圖所示,根據(jù)圖象可知,拋物線的解析式可能是(  )
A.y=x2-x-2B.y=-
1
2
x2-
1
2
x+2
C.y=-
1
2
x2-
1
2
x+1
D.y=-x2+x+2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

一位籃球運(yùn)動(dòng)員站在罰球線后投籃,球入籃得分.下列圖象中,可以大致反映籃球出手( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案