【題目】如圖,在矩形ABCD中,點(diǎn)E是AD的中點(diǎn),∠EBC的平分線交CD于點(diǎn)F.將△DEF沿EF折疊,點(diǎn)D恰好落在BE上M點(diǎn)處,延長BC、EF交于點(diǎn)N, 有下列四個結(jié)論:① DF=CF;②BF⊥EN;③△BEN是等邊三角形;④S△BEF=3S△DEF. 其中,正確的結(jié)論有( )
A.1個 B.2個 C.3個 D.4個
【答案】C
【解析】
試題分析:∵四邊形ABCD是矩形,∴∠D=∠BCD=90°,由折疊的性質(zhì)可得:∠EMF=∠D=90°,DF=MF,
即FM⊥BE,CF⊥BC, ∵BF平分∠EBC, ∴CF=MF, ∴DF=CF;故①正確;
∵∠BFM=90°﹣∠EBF,∠BFC=90°﹣∠CBF, ∴∠BFM=∠BFC, ∵∠MFE=∠DFE=∠CFN,
∴∠BFE=∠BFN, ∵∠BFE+∠BFN=180°, ∴∠BFE=90°, 即BF⊥EN,故②正確;
∵在△DEF和△CNF中,∠D=∠FCN=90°,DF=CF,∠DFE=∠CFN∴△DEF≌△CNF(ASA),
∴EF=FN, ∴BE=BN, 但無法求得△BEN各角的度數(shù), ∴△BEN不一定是等邊三角形;故③錯誤;
∵∠BFM=∠BFC,BM⊥FM,BC⊥CF, ∴BM=BC=AD=2DE=2EM, ∴BE=3EM,
∴S△BEF=3S△EMF=3S△DEF;∴④正確.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABC=∠ACB,AD、BD、CD分別平分△ABC的外角∠EAC、內(nèi)角∠ABC、外角∠ACF.以下結(jié)論:
①AD∥BC;
②∠ACB=2∠ADB;
③∠ADC=90°﹣∠ABD;
④BD平分∠ADC;
⑤∠BDC=∠BAC.
其中正確的結(jié)論有( )
A.2個 B.3個 C.4個 D.5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的是 ( )
A. 一次函數(shù)是正比例函數(shù) B. 正比例函數(shù)不是一次函數(shù)
C. 不是正比例函數(shù)就不是一次函數(shù) D. 不是一次函數(shù)就不是正比例函數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某氣象局預(yù)報(bào)稱:“明天本市的降水概率為70%”.這句話指的是( )
A. 明天本市70%的時間下雨,30%的時間不下雨
B. 明天本市70%的地方下雨,30%的地方不下雨
C. 明天本市一定下雨
D. 明天本市下雨的可能性是70%
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( )
A. (x+y)2=x2+y2 B. (x-y)2=x2-2xy-y2
C. (x-2y)2=x2-4y2 D. (-x+y)2=x2-2xy+y2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一時刻,身高1.6米的小強(qiáng)在陽光下的影長為0.8米,一棵大樹的影長為4.8米,則樹的高度為( )
A.4.8米B.6.4米C.9.6米D.10米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形OABC和正方形ADEF的頂點(diǎn)A,D,C在坐標(biāo)軸上,點(diǎn)F在AB上,點(diǎn)B,E在函數(shù)y=(x>0)的圖象上,則E點(diǎn)的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】油箱中存油20升,油從油箱中均勻流出,流速為0.2升/分鐘,則油箱中剩余油量 Q(升)與流出時間t(分鐘)的函數(shù)關(guān)系是( 。
A.Q=0.2t
B.Q=20﹣0.2t
C.t=0.2Q
D.t=20﹣0.2Q
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com